
Guarded Fresh Goals: Dependency-Directed Introduction of
Fresh Logic Variables

EVAN DONAHUE, University of Tokyo, Japan

We extend miniKanren with a new fresh form that combines logic variable instantiation with unification. We
show how combining these operations exposes information about the dependencies between logic variables
that permits a variety of optimizations and heuristics. These optimizations include minimizing the intro-
duction of new logic variables, eagerly exploiting ground terms, and reordering conjuncts according to the
interdependencies between relations that share logic variables. We demonstrate improved performance in a
collection of relational program synthesis tasks and describe possible avenues for further exploration within
this architectural framework.

ACM Reference Format:
Evan Donahue. 2021. Guarded Fresh Goals: Dependency-Directed Introduction of Fresh Logic Variables. In .
ACM, New York, NY, USA, Article 5, 15 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Relational program synthesis is a central topic of research in the miniKanren community due
in part to the language’s strengths in this area [5–7, 9]. At the same time, the combinatorial
nature of the task places great demands on the underlying synthesis engine in terms of speed and
search efficiency. Much work has been dedicated to exploring various search strategies and other
algorithmic enhancements to improve miniKanren’s search performance [3, 5, 11–13, 15].

The central contribution of this paper is an extension to miniKanren that enables the application
of several heuristics that significantly improve the performance of a relational interpreter on a
variety of program synthesis tasks. Several of those heuristics, such as reordering conjuncts more
fairly, prioritizing goals with ground arguments, and reusing logic variables to avoid extending the
substitution are related to recent work [2, 5, 12]. Others, particularly interleaving parallel relations
are, to our knowledge, novel in this work.
The work described in this paper was conducted in the SmallKanren dialect of miniKanren

implemented in Pharo Smalltalk. SmallKanren is a first-order dialect that supports an extensible
constraint system [1], a debugger [14], and tabled relations [4]. The code examples in this paper
were transliterated from Smalltalk code into a Scheme-like pseudocode for greater readability by
the wider miniKanren community.

2 RELATIONAL PROGRAM SYNTHESIS
Program synthesis, in a miniKanren context, involves specifying program behavior in terms of a
set of input/output values and allowing the synthesis system to search for a program that produces
each output given its respective input.
Consider the following pseudocode for a program synthesis relation, which will be referenced

throughout the remainder of the paper:

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
miniKanren 2021, August 26 2021, Online
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

miniKanren 2021, August 26 2021, Online Evan Donahue

(define s y n t h e s i z e o (program inpu t− 1 ou tpu t− 1 i npu t− 2 ou tpu t− 2 . . .)
(fresh ()

(e v a l o program inpu t− 1 ou tpu t− 1)
(e v a l o program inpu t− 2 ou tpu t− 2)
. . .))

Listing 1. Pseudocode for synthesizeo

Following prior work on relational program synthesis in miniKanren, evalo is a relational implemen-
tation of the Scheme eval function, which accepts an expression and an environment and produces
the value corresponding to the expression evaluated in the context of the supplied environment.
Due to miniKanren’s ability to "run backwards," not only can the evalo relation evaluate the same
range of expressions as the non-relational eval function, it can also, when supplied with output
values, synthesize all possible expressions that evaluate to those values in a given environment.

By sharing the program logic variable among all calls to evalo , the synthesizeo relation constrains
program to satisfy each pair of input/output values. Inputs are supplied as environments with
variables pre-bound to the input values, while outputs are passed as return values to the evalo
relations.

A simple implementation of evalo might look as follows:

(define e v a l o (e x p r e s s i o n env i r onmen t ou t)
(conde (quo t e o e x p r e s s i o n ou t)

(l o o kupo e x p r e s s i o n env i r onmen t ou t)
. . .
(c o n s o e x p r e s s i o n env i r onmen t ou t)))

3 GUARDED FRESH GOALS
3.1 Motivation
Any non-trivial miniKanren program will contain numerous instances of the fresh form for
instantiating fresh logic variables. In its simplest implementation, however, fresh makes no use of
several pieces of information that the implementation can use as heuristics to significantly speed
up program synthesis.1

Consider the common miniKanren idiom:

(define s om e− r e l a t i o n (q)
(fresh (a b)

(== q (cons a b))
. . .))

If q is a ground pair, a and bwill be bound to its contents, allowing destructuring of complex input
terms. If q is a free logic variable, it will be bound to a newly created pair and a and b will in turn
correspond to the subterms of the new pair. The duality of interpretations of this idiom depending
on whether q is free or bound is part of what gives miniKanren its ability to "run backwards."

1The implementation details described in this paper are, of necessity, partly a consequence of the affordances of the
Smalltalk language. Lacking macros, SmallKanren requires the user to wrap all potentially recursive calls in explicit,
user-level fresh goals to avoid infinite recursion, as is done in [8]. As a result, managing fresh goals implicitly manages
all potentially recursive goals, which is why this paper focuses its discussion on the fresh form in particular. Other
miniKanren implementations with other architectures may need to manage other forms as well, such as relation definition,
although such treatment is likely to be analogous and require little additional effort.

Guarded Fresh Goals miniKanren 2021, August 26 2021, Online

However, the standard implementation of fresh as defined in [4] does not make use of several
pieces of information useful for improving the performance of the overall search.

3.1.1 Reusing Logic Variables. First, considering the case in which q is ground, every relation that
accesses subterms of q must do so by creating new free logic variables and binding them to those
subterms. Repeated variable binding will lead to an ever expanding substitution, increasing the
cost of the walk operation in all future unifications. Consider the above relation evaluated in the
following substitution:
((q . (cons c 1)))

Assuming c is a logic variable, under the normal idiom, the substitution would become:
((b . 1) (c . a) (q . (cons c 1)))

Suppose, however, that it was possible to transform the fresh goal into something of the following
form (slightly abusing the notation of fresh to allow for constants in the variable declaration form):
(define s om e− r e l a t i o n (q)

(fresh (c 1)

. . .))

The logic variable and even the ground term are simply reused directly by subgoals of the fresh

and the unification and corresponding extensions to the substitution would be avoided.

3.1.2 Prioritizing Relations with Ground Arguments. The groundedness of q can be an important
heuristic in determining when to execute the subgoals of the fresh goal. If q is bound, then its value
is necessarily constrained relative to the case in which it is free and the fresh goal may therefore
fail sooner than if q was free. As such, given the choice between expanding the subgoal of a fresh

that destructures an existing ground term and one that creates a new binding and searches within
an unconstrained space, it may in cases be preferable to prioritize the former over the latter.
Consider the synthesis problem starting from the following partial specification of the map

function in which underscores represent "holes" in the program for the synthesis engine to fill:
(define map (f x s)

(if (null? xs) '()

(cons (f (car xs)) (map _ _))))

If the interpreter begins by trying to synthesize the arguments to the recursive call directly, it will
find that they are completely unconstrained, leading to a very large search space. If, however, the
interpreter begins by starting to evaluate the already ground body of the recursive step, waits until
it encounters the variable lookup expressions f or xs in the body, and then attempts to synthesize
the arguments to the recursive call using the values that must be returned by the variable lookups,
the search will be considerably more constrained.
Byrd et al. [5] reports significant performance gains from manually controlling this execution

order in the interpreter, however it is possible to arrive at a similar execution order automatically
by prioritizing conjuncts with ground inputs over those whose inputs are completely free, as this
will prioritize execution of the body, then extension of the environment, and finally the evaluation
of the operands with which that environment is extended. This heuristic and its application are
discussed in more detail in 6.

3.1.3 Interleaving Interdependent Goals. Using normal left-to-right conjunction, the first call to
evalo must complete before subsequent evalo calls can be evaluated. However, because the only
information available to constrain the search is present in the input/output pairs, the first call to
evalo must operate entirely without the benefit of subsequent input/output pairs. It may therefore

miniKanren 2021, August 26 2021, Online Evan Donahue

be desirable to interleave the subgoals of these two calls to evalo such that subexpressions of the
final program term selected within the first evalo call can immediately be tested against all available
input/output information from subsequent calls.
Consider the following pair of input/output examples for synthesizing an nth function that

returns either the nth element in a list or #f if the index is out of bounds:
(s y n t h e s i z e o
program
'(1 ((a) (b))) '(a)

'(1 ()) #f)

Because the first output value is a list, synthesizeo may initially be tempted to attempt to synthesize
a program beginning with cons. Such an attempt will succeed an unbounded number of times while
considering the first input/output pair, albeit not in a manner that generalizes to the next pair. No
program that begins with cons can ever synthesize the \#f value in the following input/output pair.
A "fair" search that considered both input/output pairs in tandem as it proceeded through the

search would be able to prune this infinite branch and others like it immediately. Crucially, however,
this fairness is not fairness at the level of individual disjunctions or conjunctions, but rather at a
higher semantic level. It is a fairness between calls to evalo itself and between their corresponding
subgoals.

Writing a "fair" interleaving evalo would be considerably more complex than simply translating
an existing functional eval implementation into relational terms and calling it repeatedly as is done
in syntehsizeo . However, if the system recognizes, when it first attempts to destructure program
into its subexpressions, that program is a free variable, it has the opportunity to delay evaluation
until more is known about the constraints on program. Even if program itself is never directly
bound or otherwise constrained, as would be the case in the example above, it may be useful
to make all assumptions that will be made about program at the same time. By executing, for
instance, the subgoals from each of the evalo calls that attempt to bind the first subexpression of
program to cons, the search can check that each of these calls to evalo is expecting a pair before
attempting to synthesize any further subexpressions. Such delaying and promoting, guided by
the dependencies on shared logic variables and depending on the heuristics used, automatically
recovers the interleaved version of evalo described above without sacrificing the interpretability of
the evalo relation. This problem of needing to interleave relations that are easier to write separately
arises in other areas as well, and so may have wider applicability than just to program synthesis
[7].

3.2 Guarded Fresh Goal Syntax
To make efficient use of the information mentioned in the previous section, we define a new type
of fresh form that implicitly captures this information. Using guarded-fresh, the above idiomatic
use of fresh would have the following syntax:
(define s om e− r e l a t i o n (q)

(guarded-fresh ((q (A . B))

. . .)))

This form specifies that q should be unified with the pair of newly instantiated logic variables A
and B and then any subgoals should be executed with direct access to the new logic variables. For
clarity when discussing the implementation, the following "desugared" notation will be used for
the remainder of this paper:

(define s om e− r e l a t i o n (q)

Guarded Fresh Goals miniKanren 2021, August 26 2021, Online

(guarded-fresh ((q '(A . B))
(lambda (a b)

. . .)))

Listing 2. Minimal working example of guarded-fresh syntax

The guarded-fresh goal consists of two parts. The first argument is a binding form similar to
that of let. Logic variables or ground terms in the local environment are bound to patterns, which
are interpreted by the form. The syntax of these patterns is analogous in this instance to the generic
Scheme reader with the exception that symbols starting with capital letters are interpreted as fresh
logic variables. The binding (q '(A . B)) indicates that q is to be bound in the current substitution
to a pair containing two fresh logic variables, A and B. The second argument to guarded-fresh is a
lambda expression that accepts as many arguments as there are logic variables in all of the binding
expressions combined.
A naive implementation of this form would simply unify q with the pair (A . B) and then

invoke the lambda with arguments A and B. However, such an implementation makes no use of
the dependency information that is made explicit by this syntax. Because subgoals resulting from
evaluation of the lambda term containing A or B depend on the contents of q, this form exposes
information needed to decide when to execute those subgoals based on the groundedness of q or
on the timing of the execution of other subgoals that also depend on q.2

4 IMPLEMENTATION
In this section, we describe the high-level intuition behind the implementation of guarded-fresh.
We defer a more detailed discussion of the implementation details to A.

4.1 The Schedule
The SmallKanren implementation of guarded-fresh extends the central miniKanren package datas-
tructure, which contains the substitution and constraint store, with an additional data structure we
will refer to as the "schedule:"
(s u b s t i t u t i o n c o n s t r a i n t− s t o r e s c h e d u l e)

SmallKanren implements the schedule as a simple queue, although see 6 for remarks on alternative
implementations.

4.2 Adding to the Schedule
When guarded-fresh goals are first encountered, their binding forms are immediately unified in
the current substitution and a tuple containing dependency information and the lambda expression
are added to the schedule. Returning to the minimal working example 2, q is immediately unified
with (A . B), and the tuple ((q) (A B) (lambda (a b) . . .)) is added to the schedule.

4.2.1 External Variables. The list (q) represents the "external" variables that correspond to the
left-hand-sides of the guarded-fresh binding form. They are called "external" variables because
they represent variables that already exist in the environment outside the guarded-fresh. External
variables are used to determine when the guarded-fresh depends on ground terms or bound
variables, which guides the rearrangement of the schedule to make best use of ground information.

2Lozov and Boulytchev [12] describes the use of a similar type of dependency information collected through static program
analysis at the relation level. It is possible that a similar type of static analysis could afford the same benefits described
in this paper to a program written using the conventional miniKanren idioms, depending on the affordances of the host
language.

miniKanren 2021, August 26 2021, Online Evan Donahue

If, for instance, q is already bound, this guarded-fresh will have no external variables and its
external variable list will be empty.3 The significance of an empty list will be explained in 4.3.

4.2.2 Internal Variables. The list (A B) represents the "internal" variables that correspond to the
newly instantiated logic variables generated from the capitalized symbols in the interpreted binding
patterns. These internal variables will be passed as arguments into the lambda term when the tuple
is removed from the schedule. If q is bound prior to this removal, including by other guarded-fresh
goals that also depend on q, these internal variables will be used along with the unifier to extract
the ground terms from the binding of q to which they correspond, and these ground terms will be
passed to the lambda term instead. This latter procedure is discussed in more detail in A.

4.2.3 Lambda Term. The lambda term in the tuple represents the continuation that will return
the subgoal of the guarded-fresh form when supplied with the internal variables on which that
subgoal depends.

4.3 Removing from the Schedule
Because fresh goals in SmallKanren contain all recursive calls, each step in the search will return a
package with unifications added to the substitution, constraints added to the constraint store, and
potentially recursive fresh goals added to the schedule.4 If the schedule is empty, then the package
can be returned as an answer, as there exist no more conjuncts to constrain it. However, so long as
the schedule is non-empty, there remain additional conjuncts and the stream represented by the
package remains incomplete.

In order to expand this incomplete stream, it is necessary to select one tuple from the schedule,
evaluate its lambda term by supplying the corresponding internal variables, and then evaluate the
returned goal in the context of the current package. If the schedule is a queue, the simplest strategy
is simply to pick the first tuple, with one caveat: when a tuple is removed from the queue, each of
its external variables must be removed from the list of external variables for each tuple remaining
in the schedule.

Tuples with empty external variable lists have no dependencies on which they are waiting, and
so should be prioritized above even the first tuple in the schedule. This mechanism is what creates
the higher-level fair interleaving discussed in 3.1.3. Even if q has not been bound by program
inputs, all tuples that depend only on q or already bound external variables will fire in succession,
independent of the order in which they were added to the schedule. Correspondingly, subgoals
of evalo that depend on the same subexpression will likewise fire in succession, bringing each
subgoal’s ground data to bear on each step of the synthesis.

5 EVALUATION
This section compares the performance of a relational interpreter implemented using guarded-fresh

goals to one implemented using standard left-to-right conjunct evaluation. SmallKanren, and by
extension any relational interpreter written in SmallKanren, is implemented using Smalltalk as the
host language. However, the interpreters used in these experiments interpret a restricted version of
Scheme.
3Note, however, that although the guarded-fresh binds q immediately, a subsequent guarded-fresh that also depends
on q should not therefore mistake q for a ground term supplied externally to the program. Differentiating between variables
bound by other guarded-fresh goals and those bound to primary inputs to the program is an important subtlety which
will be further discussed in A
4The link between fresh goals and recursive relations in SmallKanren is an artifact of the affordances of the host language
and arises from a lack of macros as in [8]. Other host languages may differ, and will have to adjust this description
accordingly.

Guarded Fresh Goals miniKanren 2021, August 26 2021, Online

The functions chosen for synthesis belong to three classes: quines, logical functions (and and xor),
and recursive functions of lists (zip, map, append). Quines were chosen for comparison with past
work, and due to their unusual quine property as it pertains to relational program synthesis. The
logical functions were chosen because they are relatively small functions that nevertheless require
a larger number of input/output examples to fully specify, which it was assumed would benefit the
guarded interpreter’s ability to make early use of ground information in the input/output pairs. The
recursive functions were chosen because the ability to exploit ground information in the form of the
partial program during the recursive step was likewise thought to benefit the guarded interpreter.
We were not able to conceive of any a priori classes of functions for which we believed the guarded
clauses would be a liability, however the quines case proved interesting in this regard.

The interpreters perform limited canonicalization to rule out some expressions that, while valid
Scheme, are generally unhelpful in synthesizing recursive functions. For instance, car and cdr

are prevented from synthesizing a cons as a direct child.5 Consequently, the results here are not
comparable to similar synthesis experiments in other host languages, and should be taken only as
a comparative benchmark between two program synthesis tasks in the same host language using
the same interpreter architecture.

All experiments were run on a Lenovo ThinkPad T520 laptop with a 2.4GHz Intel Core i7-2760QM
CPU running Ubuntu 18.04. To measure performance, we used the Pharo bench command, which
runs the synthesis as many times as possible in one second with a minimum of one execution and
averages the results. As such, the longer times reported were the result of a single run. However,
given the magnitudes involved and the variances observed during testing, we do not believe
additional runs would substantially change our conclusions.

5.1 Smallest Partial Function Synthesized
In this section, we report the smallest partial functions required for both the regular interpreter and
the guarded interpreter to synthesize a complete and correct implementation. For each function
name, we report the smallest partial program required for each interpreter using two notational
conventions: underscores (_) represent free logic variables and digits (1, 2, etc.) represent variable
lookups of the first, second, etc. argument to the synthesized function. 5 minutes was the cutoff
used to terminate searches early, as allowing the interpreters to run much beyond that occasionally
caused the Smalltalk image to lock up. Blank table entries indicate that the entire program was
synthesized with no partial program hints. Function names are in bold if the guarded interpreter
resulted in improved performance on this program completion metric. Time-based metrics are
reported in the next section.

Function Left-to-Right Fresh Guarded Fresh
quine
and
xor
zip (if (null? 2) ’() (cons (cons (car 1) (car 2))

(_ _ _)))
(if _ ’())

map (if (null? 2) 2 (cons (1 (car 2)) (_ _ _))) (if (null? 2) 2 (_ (_ _) _))

append (if (null? 1) 2 (cons (car 1) (_ _ _))) (if _ 2 _)

5This canonicalization is accomplished with several specialized evalo relations that evaluate only a subset of all possible
forms.

miniKanren 2021, August 26 2021, Online Evan Donahue

Note that the recursive step proved particularly difficult for the left-to-right synthesis system,
and it was only ever able to synthesize a recursive step if prompted to synthesize an apply.6

5.2 Timed Comparison Using Identical Partial Programs
Times in this section were reported using the greatest partial program required by either interpreter
to synthesize the function in question. Orders of magnitude improvements are reported for each
function, with positive orders with boldface function names indicating improved performance with
the guarded interpreter and negative orders with a plain font face indicating reduced performance.

Function Left-to-Right Fresh Guarded Fresh Orders of Magnitude Improvement
quine .84 seconds 11 seconds -1
and .3 seconds .16 seconds 0
xor 54 seconds .4 seconds 2
zip 1:35 .58 seconds 2
map 2:47 8.8 seconds 1
append 4:47 2.5 seconds 2

Predictably, the guarded interpreter, which was able to synthesize complete programs using
smaller partial programs was faster when measured on the same partial recursive programs.
Surprisingly, the non-recursive xor program was also significantly faster in the guarded interpreter,
and even more surprisingly, quine performance degraded significantly when using guarded goals.

6 DISCUSSION
As demonstrated in 5, guarded clauses frequently offer a significant performance increase over a
static left-to-right conjunct order. However, measuring performance in miniKanren is complex due
to the fact that even small, seemingly innocuous changes can alter the search behavior enough
to result in performance increases or decreases of several orders of magnitude. One surprising
example of this is that adding multiple no-op fresh goals to applyo and ifo significantly improved
the performance of both interpreters as in the following7:
(define i f o (e xp r env ou t)

(fresh ()

(fresh ()

. . .)))

Beyond quines, the dramatic differences in performance between the left-to-right interpreter
and the guarded interpreter on synthesizing the recursive steps of programs were likely due in
significant part to the eager evaluation of ground terms for synthesizing recursive programs. By
the time the recursive step is to be synthesized, most of the function has already been synthesized,
and so can be exploited eagerly by the guarded-fresh goals evaluating the recursive steps. The fact
6Although it is not apparent in this syntax, the interpreters used an explicit apply function that allowed the partial program
to specify an explicit function application as opposed to other function-like keywords.
7The left-to-right interpreter used classic fresh goals, whereas the guarded interpreter used "fair" fresh goals handled by
the schedule like guarded-fresh goals but without the dependency tracking behavior. Performance increases may have
been due to delaying the expensive ifo and applyo relations long enough to find an earlier answer. The fair nature of the
queue-based schedule may have helped to delay those relations for longer. A third interpreter composed entirely of these
"fair" fresh goals was also tested, but performed universally worse than either of the others, possibly because these goals
did not unify their terms immediately, as did guarded-fresh goals, nor did they make great use of the goal ordering done
by the programmer, spending a great deal of time exploring unconstrained parts of the search space, such as by expanding
the environment with fresh logic variables.

Guarded Fresh Goals miniKanren 2021, August 26 2021, Online

that the left-to-right interpreter was unable to synthesize a single recursive step without significant
prompting supports this theory, and it agrees with the analysis of [5].
However, the significant performance difference on xor, which is not recursive, suggests that

eager use of ground information is not the only dimension of improvement. We suspect that the
interleaving of the evalo relations to more fairly apply the information contained in the input/output
pairs may be more responsible for this improvement. However, additional test functions and a more
fine-grained analysis of the individual optimizations would help clarify their relative contributions.

7 RELATEDWORK
The strategy of using guard clauses to capture dependency information has a long history in
logic programming, with applications to improving search performance [10] and enabling the
coordination of parallel processors [16, 17]. Although this is to our knowledge the first attempt
to bring this syntactic strategy to miniKanren, our objectives in doing so intersect with several
existing lines of work.

There has been much work within the miniKanren community on improving search performance
for various types of problems [13, 15]. This work belongs to that broad category as well, but it is
worth comparing it more specifically to several lines of methodologically similar work on conjunct
reordering and thematically similar work on improving the performance of relation program
synthesis systems.
Lozov and Boulytchev [11, 12] describe an approach to conjunct reordering similar in some

respects to the reordering achieved by guarded-fresh goals, although with a different focus. The
authors describe a "naive fair conjunction" that behaves like guarded-freshwithout the dependency
information derived from the external variables. This fair conjunction avoids divergence by default
and serves as the basis for further heuristic optimizations. In particular, the authors perform
static analysis at the relation level and track runtime information to identify structurally recursive
relations that are safe to evaluate eagerly for significant performance gains on some types of
search problems. guarded-fresh as currently implemented does not identify such relations, but
performs other forms of reordering, such as interleaving subrelations of evalo not discussed in
[12]. Consequently, there may be room to improve guarded-fresh by incorporating the recursion
tracking described in that work.

Interestingly, the choice of a queue as the default schedule datastructure yields behavior similar
to this fair conjunction in that the queue also guarantees convergence and for the same reasons.
Every goal added to the schedule, ignoring reordering due to dependency heuristics, will eventually
be run, which is the key condition that avoids divergence. If the schedule was a list, it would
be possible to add and remove goals indefinitely without ever reaching a goal deeper in the
list, potentially diverging as a result. The effect of the dependency reordering heuristics on this
divergence avoiding property—both those currently implemented and those enabled by the general
guarded architecture—remains a topic of ongoing research.

Ballantyne [2] describes a "set-var-val" optimization that dynamically detects unifications of fresh
variables performed before non-deterministic branching and mutates the internal variable state to
avoid unnecessary walking of the substitution. This optimization performs a similar function to
the variable reuse optimization of guarded-fresh. guarded-fresh does not have the constraint that
its substitution-avoiding properties depend on the positioning of branching conde forms, but it also
handles the variables covered by the set-var-val optimization less efficiently than that optimization
due to the need for an initial walk. It is therefore likely the two could be productively combined.
Byrd et al. [5] describes several optimizations to the interpreter architecture itself. First, it

describes a conde1 form equivalent to the groundedness-checking behavior of guarded-fresh in
that it executes its subgoals immediately if all arguments are ground, and suspends them otherwise.

miniKanren 2021, August 26 2021, Online Evan Donahue

Supplying guarded-fresh with patterns consisting of just single variables as in the following has a
similar effect, albeit with the addition of the dependency-tracking machinery:

(guarded-fresh (q Q)
. . .)

Byrd et al. [5] also describes specific optimizations to the applyo relation that involve checking
for groundedness across several conjoined relations, including those that handle the operator
and those that handle the operands of an apply expression, prioritizing whichever has ground
terms. guarded-fresh performs a similar although not identical type of groundedness analysis
automatically, although that analysis is subject to the heuristics built into the guarded-fresh

implementation, which is still a subject of active research.
Interestingly, we were unable to improve performance with our conde1 implementation, suggest-

ing that the benefits of conde1may already be entailed in the implementation of guarded-fresh. We
were also unable to improve performance by designing heuristics to make guarded-freshmimic the
groundedness seeking behavior of the manual apply optimizations. However, because [5] attests to
their efficacy there may be room to further improve guarded-fresh using a better understanding of
the logic captured by those manual optimizations.

8 CONCLUSION
We described a new fresh form that captures grounding and dependency information and an
architecture for exploiting that information to improve the performance of the miniKanren search
in a program synthesis context. We demonstrated significant performance improvements on a
variety of program synthesis tasks and described several additional avenues of potential further
research on dynamically reordering conjuncts using grounding and dependency information to
improve the performance of relational program synthesis systems.
In future work, we anticipate expanding our focus to other classes of problems, including

exploring the possibility of interleaving conjoined goals in another common miniKanren program
architecture involving the parallel invocation of two different relations with mutually entangled
dependencies.

Chirkov et al. [7] discusses the case of a Javascript synthesis system composed of a parser and an
interpreter that mutually constrain one another. The authors suggest that writing the parser and the
interpreter as separate relations is easier and more maintainable, while interleaving the relations
might make synthesis faster. guarded-fresh goals, possibly supplemented by additional heuristics,
might allow the relations to be written separately and subsequently automatically interleaved by
the implementation in the same manner as evalo . Likewise, semantic parsers for natural language
may also benefit as they exhibit the same heterogeneous, bipartite structure.

9 ACKNOWLEDGMENTS
We thank Jason Hemann, Michael Ballantyne, Petr Lozov, and Nada Amin for their advice, explana-
tions, encouragement, and discussion during the planning, writing, and submission phases of this
piece. We especially thank Will Byrd for his extensive feedback and comments. We also thank the
anonymous reviewers for their detailed suggestions.

REFERENCES
[1] Claire E Alvis, Jeremiah J Willcock, Kyle M Carter, William E Byrd, and Daniel P Friedman. 2011. cKanren miniKanren

with constraints. (2011).
[2] Michael Ballantyne. 2020. Faster miniKanren [Source Code]. (2020). https://github.com/michaelballantyne/faster-

miniKanren

https://github.com/michaelballantyne/faster-miniKanren
https://github.com/michaelballantyne/faster-miniKanren

Guarded Fresh Goals miniKanren 2021, August 26 2021, Online

[3] David C Bender, Lindsey Kuper, William E Byrd, and Daniel P Friedman. 2009. Efficient representations for triangular
substitutions: A comparison in miniKanren. Unpublished manuscript (2009).

[4] William Byrd. 2010. Relational Programming in Minikanren: Techniques, Applications, and Implementations. Ph.D.
Dissertation. Indiana University.

[5] William E Byrd, Michael Ballantyne, Gregory Rosenblatt, and Matthew Might. 2017. A unified approach to solving
seven programming problems (functional pearl). Proceedings of the ACM on Programming Languages 1, ICFP (2017),
1–26.

[6] William E Byrd, Eric Holk, and Daniel P Friedman. 2012. MiniKanren, Live and Untagged: Quine Generation via
Relational Interpreters (Programming Pearl). In Proceedings of the 2012 Annual Workshop on Scheme and Functional
Programming. ACM, 8–29.

[7] Artem Chirkov, Gregory Rosenblatt, Matthew Might, and Lisa Zhang. 2020. A Relational Interpreter for Synthesizing
JavaScript. In Proceedings of the miniKanren and Relational Programming Workshop.

[8] Jason Hemann Daniel P Friedman. 2013. µKanren: A Minimal Functional Core for Relational Programming. In
Proceedings of the 2013 Workshop on Scheme and Functional Programming. http://webyrd.net/scheme-2013/papers/
HemannMuKanren2013.pdf

[9] Jason Hemann and Daniel P Friedman. 2020. Some Novel miniKanren Synthesis Tasks. In Proceedings of the miniKanren
and Relational Programming Workshop.

[10] Sverker Janson and Seif Haridi. 1991. Programming paradigms of the Andorra kernel language. SICS Research Report
(1991).

[11] Petr Lozov and Dmitry Boulytchev. 2020. On Fair Relational Conjunction. (2020).
[12] Peter Lozov and Dmitry Boulytchev. 2021. Efficient fair conjunction for structurally-recursive relations. In Proceedings

of the 2021 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation. 58–73.
[13] Kuang-Chen Lu, Weixi Ma, and Daniel P Friedman. 2019. Towards a miniKanren with fair search strategies. In

Proceedings of the 2019 miniKanren and Relational Programming Workshop. 1–15.
[14] Gregory Rosenblatt, Lisa Zhang, William E Byrd, and Matthew Might. 2019. First-order miniKanren representation:

Great for tooling and search. In Proceedings of the miniKanren and Relational Programming Workshop. 16.
[15] Cameron Swords and Daniel Friedman. 2013. rKanren: Guided search in miniKanren. In Proceedings of Scheme

Workshop.
[16] Kazunori Ueda. 1985. Guarded horn clauses. In Conference on Logic Programming. Springer, 168–179.
[17] Kazunori Ueda and Masao Morita. 1990. A new implementation technique for flat GHC. In Logic programming. 3–17.

A IMPLEMENTATION OF GUARDED FRESH
An example will be useful for illustrating the implementation of the guarded-fresh goals. Consider
the implementation of the conso relation in a relational interpreter:

(define c o n s o (e xp r env ou t)
(guarded-fresh ((e xp r '(cons CarExpr CdrExpr))

(ou t '(CarVal . CdrVal)))
(lambda (c a r− e xp r c d r− e xp r c a r−va l c d r−va l)

(conj (e v a l o c a r− e xp r env c a r−va l)
(e v a l o c d r− e xp r env c d r−va l)))))

Listing 3. Implementation of conso subrelation of relational interpreter

Given a synthesis problem with two input/output pairs, the top level evalo will be called two
times, one for each pair, as illustrated in 1. In the branch of the search tree in which the interpreter
attempts to synthesize a cons expression, conso will be evaluated two times, again one for each
input/output pair. The first call to the guarded fresh goal in the conso relation will essentially unify
expr with a triple and out with a pair, each containing the appropriately instantiated logic variables.
It will then push a 3-tuple of the external variables from the left hand sides of the bindings (expr
and out), the internal variables from the right hand patterns (CarExpr, CdrExpr, CarVal, and CdrVal),
and the closure representing the lambda term into the schedule, yielding a tuple of the form:
((e xp r)
(CarExpr CdrExpr CarVal CdrVal)

http://webyrd.net/scheme-2013/papers/HemannMuKanren2013.pdf
http://webyrd.net/scheme-2013/papers/HemannMuKanren2013.pdf

miniKanren 2021, August 26 2021, Online Evan Donahue

(lambda (c a r− e xp r c d r− e xp r c a r−va l c d r−va l)
(conj (e v a l o c a r− e xp r env c a r−va l)

(e v a l o c d r− e xp r env c d r−va l))))

Note that if out is ground, it will not appear in the external variables list. Tuples with empty
lists of external variables represent guarded-fresh goals in which all terms are ground. Such tuples
may be executed immediately, ahead of other tuples in the schedule. When any tuple is removed
from the schedule for any reason, its closure will be applied to the list of internal variables and the
resulting goal will be evaluated in the current substitution.

With only one input/output pair, the resulting execution order will be similar to that of a naive
implementation that makes no use of the dependencies between multiple calls to evalo that all
depend on the same expr variable. Most of the interesting behavior only becomes apparent with
multiple parallel calls to evalo .

A.1 Adding to the Schedule
Consider the following implementation of the guarded-fresh procedure that adds new goal tuples
to the schedule:

1 (define guarded-fresh (v a r s + p a t t e r n s body)
2 (lambda (package)
3 (let ((l h s− v a r s (map car v a r s + p a t t e r n s))
4 (r h s− p a t t e r n s (map hy d r a t e− p a t t e r n (map cdr v a r s + p a t t e r n s)))
5 (b i n d i n g s (map (lambda (b) (walk−b ind ing b package)) l h s− v a r s))
6 (walked (map cdr b i n d i n g s))
7 (s u b s t i t u t i o n (un i f y walked r h s− p a t t e r n s (n ew− s u b s t i t u t i o n)))
8 (nex t−package (un i f y walked
9 (wa l k− r e c u r s i v e walked s u b s t i t u t i o n)))
10 (i n t e r n a l− v a r s (map (lambda (v) (walk v s u b s t i t u t i o n))
11 (e x t r a c t− i n t e r n a l− v a r s r h s− p a t t e r n s)))
12 (e x t e r n a l− v a r s
13 (map car (f i l t e r (lambda (b)
14 (o r (var? (cdr b))
15 (i n− s c h e d u l e ? (car b)))) b i n d i n g s))))
16 (if (null? e x t e r n a l− v a r s)
17 ((apply body i n t e r n a l− v a r s) nex t−package)
18 (e x t e n d− s c h e d u l e
19 `(, e x t e r n a l− v a r s , i n t e r n a l− v a r s , body) nex t−package)))))

Listing 4. Implementation of primary functionality for guarded-fresh form

This procedure performs the first two optimizations described in the introduction: it avoids adding
unnecessary fresh variables to the substitution, preferring instead to reuse the logic variables already
present, and it consumes ground terms eagerly if all external variables bound in a guarded-fresh

form are ground.
The first part of this procedure up to line 12 is primarily concerned with unifying ground

information from the pattern in the package substitution. The second part, from line 12 to the
end, either evaluates the subgoals immediately if all terms are ground, or else adds the goal to the
schedule.
Because the same expr logic variable is passed to each call to conso, it creates a dependency

between the two guarded-fresh goals in each call by virtue of their shared external variable. The
first call to conso unifies expr with the cons expression and pushes its tuple onto the schedule. The

Guarded Fresh Goals miniKanren 2021, August 26 2021, Online

following line-by-line description of the code therefore considers in detail the execution of the
second call, assuming the first has already pushed its tuple into the schedule, as this second call
best illustrates the important subtleties.

(let ((l h s− v a r s (map car v a r s + p a t t e r n s))
(r h s− p a t t e r n s (map hy d r a t e− p a t t e r n (map cdr v a r s + p a t t e r n s)))

Using the example of the conso relation, lines 3-4 extract the variables from the left hand side of the
guarded-fresh binding forms and the patterns from the right hand side, substituting capitalized
symbol names with logic variables.

(b i n d i n g s (map (lambda (b) (walk−b ind ing b package)) l h s− v a r s))

Line 5 invokes a specialized form of walk. walk−binding returns not simply the value to which a
variable is bound, but a pair containing the variable-value association. In the case of free variables
or ground terms, the pair contains two copies of the walked value.
The first call to conso would have found expr free and out ground, the walked bindings would

have returned (expr . expr) and (out . out) respectively. However, as the first call has now bound
expr, the second call will walk the binding to find (expr . (cons CarExpr CdrExpr)). The value of
retrieving expr itself from the substitution, as opposed to only its bound value, is that it will be
needed later to determine whether the earlier call to conso is waiting on expr, which will differentiate
this binding created by a previous guarded-fresh goal from a variable bound by program inputs.

(walked (map cdr b i n d i n g s))

Line 6 extracts the cdrs of the walked pairs, yielding a list of the values that would have been
returned by the standard walk procedure.

(s u b s t i t u t i o n (un i f y walked r h s− p a t t e r n s (n ew− s u b s t i t u t i o n)))
(nex t−package (un i f y walked (wa l k− r e c u r s i v e walked s u b s t i t u t i o n)))

Lines 7-8 extract any ground information from the pattern that needs to be added to the substitution,
such as the cons symbol, and adds that information into the substitution to produce the next
substitution. This is accomplished through a reuse of the standard unifier.

Line 7 unifies the walked external variables, in this case expr and out, with their corresponding
patterns in an empty substitution. This temporary substitution will contain binding information
that describes the relationship between the patterns in the guard forms and the external variables
bound to those patterns, and will be used to determine which information from the patterns should
be bound in the primary substitution and conversely which information from the walked variables
should be reused in the subgoals of the guarded-fresh. The creation of this substitution however
depends crucially on the order in which the patterns and the external variables are unified, and
this order is implementation dependent.
The terms must be unified so that if two variables are bound in this new substitution, walking

either one yields the variable contained in the external variable terms and not the pattern. In other
words, the ground term bound to expr by the first call to conso, namely (cons CarExpr1 CdrExpr1),
will be unified with the new pattern (cons CarExpr2 CdrExpr2), resulting in a substitution of the
form8:

((CarExpr 2 . CarExpr 1) (CdrExpr 2 . CdrExpr 1))

81 and 2 function here as indicators of which call to conso instantiated the given copy of CarExpr or CdrExpr, and are not
part of the variable name.

miniKanren 2021, August 26 2021, Online Evan Donahue

This substitution can subsequently be used in two directions. The first direction allows us to
avoid unnecessarily unifying free variables in the primary substitution.

In line 8, we extract any ground terms present in the pattern that need to be bound in the primary
substitution. This is accomplished by unifying the walked term (cons CarExpr2 CdrExpr2) with itself
walked recursively in the new substitution, and then unifying in the primary substitution the
walked variables with their own corresponding recursively walked values from the temporary
substitution. If the temporary substitution contains no new bindings (or only bindings between
variables), then the walked variables will each walk to themselves, and so their unifications in the
primary substitution will short circuit due to both values and variables being eq.

In this case, since CarExpr2 and CdrExpr2 walk to CarExpr1 and CdrExpr1, the next-package term
reduces to the no-op unification (== (cons CarExpr1 CdrExpr1) (cons CarExpr1 CdrExpr1)), which uni-
fies without walking either logic variable (as they are eq?).

(i n t e r n a l− v a r s (map (lambda (v) (walk v s u b s t i t u t i o n))

(e x t r a c t− i n t e r n a l− v a r s r h s− p a t t e r n s)))

The second direction allows us to reuse the variables bound in the primary substitution in the
subgoals of this expression. On line 10, we extract the internal variables CarExpr2 and CdrExpr2
from the current pattern and walk them in the substitution to yield CarExpr1 and CdrExpr1, with
which they would have unified had we naively unified the entire pattern in the primary substitution.
Since CarExpr2 and CdrExpr2 are still unbound and not present in any relations, having been
only recently instantiated, we can simply use CarExpr1 and CdrExpr1 as our internal variables
in their place and save the cost of unifying these free variables in the primary substitution. The
internal-vars therefore simply become CarExpr1 and CdrExpr1 for all future uses, although note
that had either one been ground in the primary substitution, then one of our internal "variables,"
which we eventually pass into the lambda expression, would now be a ground term that would
later be passed into the closure.

(e x t e r n a l− v a r s
(map car (s e l e c t (lambda (b)

(o r (var? (cdr b))
(i n− s c h e d u l e ? (car b)))) b i n d i n g s))))

Beginning on line 12, we move from the first optimization that avoids unnecessary unifications to
the second, which determines when to eagerly evaluate goals based on the groundedness of the
input terms. The list of external variables is computed using the list of bindings and the distinction
between terms bound by guard clauses and terms bound previously that we discussed above. The list
of external variables is extracted from the cars of the bindings list, subject to one of two conditions.
If the cdr representing the bound value is a variable (which may be itself), then the variable

contains no ground information, and so is an external variable. If the candidate external variable is
bound to a ground term, but is also in the external variable list of an existing tuple in the schedule,
then it must have been free when the first tuple that depended on it was added to the schedule,
otherwise that tuple would have eagerly consumed the ground information. The existence of a
tuple depending on an external variable in the schedule implies that its binding in the substitution
was created by a guarded-fresh goal and not by program input.9

9One caveat is that if the tuple that created the binding has already left the schedule, the binding will be indistinguishable
from a ground term. This would arise if the evalo calls were not direct siblings, but were made at different points in the
program. This is not necessarily a problem, as the effect would be to cause the later calls to evalo to eagerly consume as
many bindings as the earlier evalo calls had added to the substitution, essentially causing it to hurry and catch up with the
earlier calls, after which it would interleave as normal.

Guarded Fresh Goals miniKanren 2021, August 26 2021, Online

(if (null? e x t e r n a l− v a r s)
((apply body i n t e r n a l− v a r s) nex t−package)
(e x t e n d− s c h e d u l e `(e x t e r n a l− v a r s i n t e r n a l− v a r s body) nex t−package))

Finally, on line 16, If the external-vars list is empty, then all input terms are definitively ground, and
the lambda term can be invoked immediately. Otherwise, the triple of external variables, internal
variables, and the closure are pushed onto the schedule.

A.2 Removing from the Schedule
Compared to the process for adding fresh goals to the schedule, the process for removing them
is comparatively simple. At the same time, this stage is open to many possible heuristics that
determine how to select which goal to expand next.
When it becomes necessary to select a new fresh goal from the schedule to expand, goals are

chosen in the order dictated by the schedule implementation. By default, SmallKanren uses the
naive fair queue-based ordering for guarded goals. The exception to this order is that if the list
of external variables has been made empty since it was added to the schedule, the corresponding
goal triple will be prioritized over other fresh goals. The primary means by which a list of external
variables can be made empty is via a mechanism tied to the removal of tuples from the schedule.

As each guarded tuple is removed from the schedule, all of its external variables are removed
from any guarded fresh goal in the schedule that contains them. Significantly, since all conso fresh
goals depend on the same expr external variable representing an expression in the synthesized
program, as soon as the first conso is evaluated, expr is removed from all subsequent conso fresh
goals in the schedule, meaning they will be prioritized over other goals in the schedule regardless
of the schedule order. The SmallKanren implementation would in this case, having removed expr
from all conso goals, subsequently evaluate the other conso goal, regardless of its position in the
schedule. Concretely, consider the following schedule containing two calls to conso interleaved
with one call to variable lookupo:
(((e xp r) (CarExpr 1 CdrExpr 1 CarVal 1 CdrVal 1) (lambda . . .))
((env) (VarName EnvValue) (lambda . . .))
((e xp r) (CarExpr 1 CdrExpr 1 CarVal 1 CdrVal 1) (lambda . . .)))

After the first goal is removed from the schedule, expr is removed from all subsequent goals:
(((env) (VarName EnvValue) (lambda . . .))
(() (CarExpr 1 CdrExpr 1 CarVal 1 CdrVal 1) (lambda . . .)))

On subsequent expansion steps the goals with the newly empty list of external variables will be
selected above the call to lookupo even though it is not first in the queue.
Adding to and removing from the schedule constitute the primary implementation details of

guarded-fresh clauses. The Smalltalk implementation from which the numbers in this paper were
reported will be made available through the author’s website in connection with this paper.

	Abstract
	1 Introduction
	2 Relational Program Synthesis
	3 Guarded Fresh Goals
	3.1 Motivation
	3.2 Guarded Fresh Goal Syntax

	4 Implementation
	4.1 The Schedule
	4.2 Adding to the Schedule
	4.3 Removing from the Schedule

	5 Evaluation
	5.1 Smallest Partial Function Synthesized
	5.2 Timed Comparison Using Identical Partial Programs

	6 Discussion
	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References
	A Implementation of Guarded Fresh
	A.1 Adding to the Schedule
	A.2 Removing from the Schedule

