
miniKanren’23

Goals as Constraints: Writing miniKanren Constraints in
miniKanren
EVAN DONAHUE, University of Tokyo, Japan

We present an extension to the relational programming language miniKanren that allows arbitrary goals to run
efficiently as constraints. With this change, it becomes possible to express a large number of commonly used
constraints in pure miniKanren without modifying the underlying implementation. Moreover, it also becomes
possible to express a number of new constraints that have proven difficult to realize within existing constraint
authoring frameworks. We believe this approach represents a promising avenue for further extending the
expressiveness of miniKanren’s constraint handling capabilities.

1 INTRODUCTION
Most non-trivial miniKanren programs depend on the use of constraints beyond unification. How-
ever, in many current implementations, adding new constraints requires modifying the underlying
constraint solver itself, which requires deep knowledge of the implementation. The situation is
somewhat improved by past work on constraint authoring frameworks [1, 11], which separate con-
straint authoring from core language development. However, even with the use of such frameworks,
some complex constraints remain difficult to express.
In this paper, we propose using miniKanren itself as a language for constraint authoring. As

we demonstrate, using only the core operators of miniKanren, it is easy to express a wide range
of common constraints, as well as a number of novel constraints that are difficult to express in
non-relational host languages. Moreover, we show that such a constraint language interoperates
well with host language constraint frameworks that are better suited for expressing constraints
that cannot be expressed in pure miniKanren, such as numeric constraints. The key idea of this
paper is that constraint solving in miniKanren can be viewed as a natural extension of the normal
miniKanren search procedure, and can therefore be implemented as a modified miniKanren interpreter
in which constraints are represented simply as normal miniKanren goals.

The remainder of the paper is structured as follows: Section 2 describes the interface extensions
made to the language to allow the specification of constraints and presents a list of example
implementations of several constraints. Section 3 describes the implementation in detail. Section 4
discusses related work.

2 INTERFACE
In this section, we introduce three new forms and implement several constraints from previous
work to illustrate their use. constraint (2.1) converts miniKanren goals into constraints. pconstraint
(2.2) defines new primitive constraints besides ==. Finally, noto (2.3) negates miniKanren goals.

2.1 constraint: miniKanren Goals as Constraints
The constraint form wraps arbitrary miniKanren goals and redefines their semantics. Normally,
conde generates multiple search branches and conjoins one child disjunct to each branch. Wrapped
with constraint, however, it instead generates a disjunction constraint and conjoins it with the state
corresponding to the current branch. Should each disjunct fail, the branch fails, as in the following
examples.

2.1.1 booleano. The simplest non-trivial constraint we can write using constraint is the booleano

constraint [11]. booleano constrains a variable to be either #t or #f. Using constraint, booleano could
be written as follows:
(define (booleano v)

miniKanren 2023, September 8 2023, Seattle, WA, USA Evan Donahue

(constraint

(conde

[(== v #t)]

[(== v #f)])))

Assuming v is free, this constraint will suspend itself in the constraint store and await unification.
When v is unified, the constraint activates and check that v is either #t or #f. If it is one of those
two values, the constraint is satisfied and it is removed from the store. If it is bound to a different
ground term, the constraint fails. Otherwise, if it is bound to a variable, the constraint returns to
the constraint store.
Likewise, if v ever becomes disequal to either #t or #f, the disjunction will collapse and the

constraint will unify the remaining value in the substitution before removing itself from the store.

2.1.2 listo. listo checks that a term unifies with a proper list [11]. This constraint lazily walks
the list and confirms that it ends—if its tail is ever fully bound—with a null list.
(define (listo l)

(constraint

(conde

[(== l '())]

[(fresh (h t)

(== l (cons h t))

(listo t))])))

listo in particular among the constraints introduced so far illustrates the duality of goals and
constraints in this framework.Without the constraint form, listowould simply be a normalminiKan-
ren goal that generates proper lists. It would be perfectly possible to define listo as a generative
miniKanren goal and then wrap it using constraint only at the call site to turn it into a constraint
at the programmer’s discretion. Any miniKanren program that generates any arbitrary structure
can likewise be turned into a constraint that tests for that structure using the constraint form.1

Importantly, here and for the rest of the paper, when we write fresh, we in fact refer to a pattern
matching form, matcho, that will be described in Section 3.5. matcho has proven easier to work with for
the purposes of implementing this constraint system. It is still possible to define fresh appropriately
for use in constraints, and so we use it for greater familiarity in the code examples, but we will not
cover its implementation in detail in this paper.

2.1.3 presento. The final constraint in this section, presento, is to our knowledge novel in this
paper. presento can be understood to be the logical negation of absento. Instead of asserting that a
given value must not appear anywhere in a term, presento asserts that a given value must appear
somewhere in the term.
(define (presento present term)

(constraint

(conde

[(== term present)]

[(fresh (h t)

(== term (cons h t))

(conde

[(presento present h)]

[(presento present t)]))])))

1One minor limitation is that, unlike the generative version of the relation, the constraint version never grounds the end of
the list with null if it is not bound elsewhere in the program. Instead, it reifies as a suspended form of the waiting constraint.
We are currently exploring modifications to the reifier that may resolve this issue.

miniKanren’23

Goals as Constraints miniKanren 2023, September 8 2023, Seattle, WA, USA

presento is much more difficult to implement than absento using existing constraint frameworks
due to the way in which it is fundamentally disjunctive. Because the constraint store implicitly
conjoins all contained constraints, absento can insert its child constraints independently into the
store. presento, by contrast, must guarantee that, for instance, the child constraint on a list’s head
must not fail—even if it otherwise would—if the constraint on the tail succeeds. This dependency
between the child constraints requires additional bookkeeping that complicates the architecture
of the constraint and the store. The complexity is further increased if the constrained value is a
complex list term containing free variables, as the constraint may in that instance need to handle the
tree traversal logic within the context of a complex unification logic that it may not be possible to
resolve immediately. In the present framework, however, both presento and absento can be expressed
with roughly the same order of implementation complexity.

2.2 pconstraint: Primitive Constraint Constructor
In the previous section, only == was used as a primitive goal. While == allows for a wide range of
constraints on structures miniKanren is natively capable of generating, it is insufficient to define
the full range of constraints usually present in miniKanren implementations. In particular, defining
type constraints such as symbolo or numbero would require a disjunction of unbounded size, which
cannot efficiently be represented within a miniKanren program. To support such constraints, this
implementation defines the pconstraint form that acts as a constructor for new primitive constraints.

pconstraint accepts a list of variables on which the constraint depends, a function responsible
for checking the constraint, and an arbitrary Scheme value to be passed as auxiliary data into the
constraint checking function. Whenever one of the constrained variables is updated, the function
receives the variable, its updated value, any constraints on the variable, and the auxiliary value.
The function must return either a simplified pconstraint, or a trivial succeed or fail constraint.
pconstraint was designed specifically to implement type constraints, and it may be necessary to
further extend the system to handle other primitive constraints. We leave such considerations to
future work.

2.2.1 symbolo & numbero. In this section we define a general typeo relation and specialize it to arrive
at versions of the usual symbolo and numbero constraints common to many miniKanren systems.

(define (typeo v t?)

(if (var? v) (pconstraint (list v) type-check t?) (if (t? v) succeed fail)))

(define (type-check var val constraint t?) ...))

(define (symbolo v) (typeo v symbol ?))

(define (numbero v) (typeo v number ?))

(define (pairo) (typeo v pair?))

typeo accepts a value or variable and a function responsible for type checking, such as symbol?. If
it receives a value, it simply returns the trivial fail or succeed goal. If instead it receives a variable,
it constructs a pconstraint, represented as a tagged vector of its three arguments: the singleton list
of the variable v, the auxiliary data which in this case is the type checking function symbol?, and a
function responsible for performing the type check, type.

The type checking function, type, at present requires some knowledge of the internal representa-
tions used by the solver to implement. In practice, simpler interfaces can likely be defined to handle
common constraint types. The function is called each time a variable on which the constraint
depends is bound, and it accepts as arguments the variable, the value (or variable) to which it has
been bound, the auxiliary data (in this case, the type predicate t?), and a constraint goal used to

miniKanren’23

miniKanren 2023, September 8 2023, Seattle, WA, USA Evan Donahue

check constraint-constraint interactions. constriant is another primitive constraint bound to var,
such as another type constriant. The auxiliary value of primitive constraints can be used to check
their interactions, such as failing when two incompatible type constraints are bound to the same
variable.

2.3 noto: Negating Goals and Constraints
Negation has been explored from a variety of angles in past work on miniKanren [14, 19]. In this
implementation, noto generalizes the usual case analysis used to perform disequality checking. It
runs its subgoal, and negates the result. If the subgoal succeeds, noto fails. If the subgoal fails, it
succeeds. If the subgoal returns any other constraint, that constraint is negated and placed into the
store. This scheme allows for the expression of a number of constraints that depend on negation,
beginning with =/=.

2.3.1 =/=. Because noto generalizes disequality solving, expressing disequality is trivial.
(define (=/= lhs rhs) (noto (== lhs rhs)))

2.3.2 not-symbolo, not-numbero. noto generalizes in the same fashion to other primitive constraints
besides ==.
(define (not-symbolo v) (noto (symbolo v)))

(define (not-numbero v) (noto (numbero v)))

(define (not-pairo v) (noto (pairo v)))

2.3.3 not-booleano, not-listo. Complex constraints built with conjunction, disjunction, and fresh
work also work as expected.
(define (not-booleano v) (noto (booleano v)))

(define (not-listo v) (noto (listo v)))

2.3.4 absento. Using disequalities and negated type constraints, it becomes possible to define the
familiar absento constraint.
(define (absento absent term)

(constrain

(=/= term absent)

(conde

[(noto (typeo term pair?))]

[(fresh (h t)

(== term (cons h t))

(absento absent h)

(absento absent t))])))

It is also possible to implement absento as a negation of presento, or vice versa.

3 IMPLEMENTATION
The implementation as a whole is composed of a pair of miniKanren interpreters. The first—the
"stream" interpreter—interprets conde and fresh as stream constructors that generate the interleaving
search tree. All other goals are viewed as constraints and are passed to the "constraint" interpreter to
check for unsatisfiability within a given branch. As the constraint solver is a miniKanren interpreter,
the constraints themselves are normal miniKanren goals, implemented here as first order structures.
The constraint interpreter defines ==, constraint, pconstraint, noto, succeed, and fail. It also redefines
conde and fresh for the constraint solving search context.

miniKanren’23

Goals as Constraints miniKanren 2023, September 8 2023, Seattle, WA, USA

The constraint interpreter performs a depth-first miniKanren search bounded by the rule that
fresh goals must suspend when the variables on which they depend are free.2 Because constraints
within this framework may contain conde, a given miniKanren goal, viewed as a constraint, may
imply a disjunction between any number of conjunctions of simpler constraints. The goal of the
constraint interpreter’s search is to find one such subset of mutually satisfiable primitive constraints
entailed by a single constraint store much in the same way the stream interpreter must search for
one subset of mutually satisfiable constraints entailed by the program overall.

In the next several sections, we review the implementation of the constraint solver. Code examples
have been simplified for greater readability. The implementation is open source, and the source
code should be consulted for more detail.

3.1 Conjunction
The primary interface to the constraint solving interpreter is via the solve-constraint function.
Consider the following partial listing:

(define (solve-constraint g s ctn resolve delta)

(cond

[(succeed? g) (if ... (solve-constraint ctn s succeed resolve delta))]

[(conj? g) (solve-constraint (conj-lhs g) s (conj (conj-rhs g) ctn) resolve

delta)]

...)))

The interpreter accepts the constraint goal to be solved, g, the state, s, and three additional goals,
ctn, resolve, and delta. These naming conventions will remain consistent throughout the rest of the
paper.

g and s are self-explanatory. ctn is so named due to a structural analogy with continuations and
continuation-passing style. The interpreter is written in a depth-first manner using a "conjunction-
passing style" in which the future of the computation, ctn, represented as the conjunction of all
goals to the "right" of the currently evaluated goal, is passed as an argument to the solver. When the
interpreter receives a conjunction for the current goal g, it calls itself recursively on the left-hand
side while conjoining the right-hand side to the current ctn. When the solver later finishes solving
the current constraint g, it will be called with the trivial succeed goal as the current constraint,
which will prompt the interpreter—subject to conditions discussed in more detail in the following
sections—to proceed with solving the next conjunct of the current ctn. Concretely, calling the solver
with 𝑔 ↦→ 𝑥 ≠ 1 ∧ 𝑦 ≠ 2 and 𝑐𝑡𝑛 ↦→ 𝑧 ≠ 3 will first trigger the conjunction condition, calling
the solver recursively with 𝑔 ↦→ 𝑥 ≠ 1 and 𝑐𝑡𝑛 ↦→ 𝑦 ≠ 2 ∧ 𝑧 ≠ 3, and then subsequently with
𝑔 ↦→ 𝑠𝑢𝑐𝑐𝑒𝑒𝑑 and then 𝑔 ↦→ 𝑦 ≠ 2 and 𝑐𝑡𝑛 ↦→ 𝑧 ≠ 3, provided that none of the constraints fail.

3.2 Unification
Consider the following partial listing of the unification solver, which is called from solve-constraint

when g is a unification constraint:

1 (define (solve- == g s ctn resolve delta)

2 (let-values ([(bindings recheck s) (unify s (==-lhs g) (==-rhs g))])

3 (if (fail? bindings) (values fail failure)

4 (solve-constraint succeed s ctn (conj recheck resolve) (conj delta

bindings)))))

2Recall that fresh in this case is implemented as a pattern matching form that possesses explicit references to the variables
on which it depends.

miniKanren’23

miniKanren 2023, September 8 2023, Seattle, WA, USA Evan Donahue

This definition of unification will look familiar from its standard implementation elsewhere. The
unifier is called, the resulting state is checked for failure. If it has not failed, the solver proceeds
to run any constraints that need to be rechecked based on the new bindings. Line 2 calls out to
a unifier that works like most miniKanren unifiers with the exception that it returns two goals
in addition to the state. bindings is a conjunction of unification goals representing the extensions
made to the state s.3 recheck represents the conjunction of constraints on all of the newly bound
variables. The next two lines illustrate the remainder of the plumbing of the solver.

Line 3 checks whether the unification has failed by checking whether the bindings consist of the
trivial fail goal, and if so returns the failure signature—the trivial fail goal and the failure stream.
The failure stream corresponds to the failure mode of the input state s, and the fail goal likewise
corresponds to the failure mode of the input parameter delta, which is a first order representation
of the constraints that have been added to s during this execution of the constraint solver.
Consider line 4. The unification constraints representing the new bindings are conjoined to

delta and passed to further solving. Should the current constraints ultimately prove satisfiable, the
constraint solver will return s and delta, both of which contain the information about which bindings
were made at this stage in the solver. delta can be viewed as an extension of the representation
of the state that tracks changes made during solving. It is primarily useful during negation and
disjunction, as the current state representation is difficult to negate or disjoin. A constraint without
negation or disjunction will ultimately discard delta and simply return s as the product of solving.
The final architectural element of the solver is the resolve constraint, which is conceptually

equivalent to the ctn constraint. Both are conjunctions of goals waiting to be solved. The difference
is that ctn contains the constraints remaining to be solved from the initial constraint received
from the stream interpreter, whereas resolve contains constraints that started out already in the
store, and were removed by, for instance, a unification, and must be re-solved later. As such, the
constraints relevant to the current unification, recheck, are conjoined with resolve before further
solving, and will later be pulled out and solved once ctn has been exhausted. Intuitively, while
constraints received from the goal interpreter and stored in ctn are necessarily not yet reflected in
the state, constraints conjoined to resolve were initially in the state when the constraint interpreter
began solving the current constraint. As such, delta must contain a record of the changes made to
the state, which corresponds to the logical simplification of the ctn constraint, whereas it need not
contain re-solved constraints already contained in the state, and so resolve may be discarded from
the final output, although it must be checked to ensure consistency. This distinction is important
for the correctness of the negation constraint, as discussion in Section 3.3.

3.3 Negation
Generalized negation operates analogously to the specialized case of disequalities. The same case
analysis by which disequality constraints interpret the results of unification can be applied to
general constraints such as type constraints and others definedwith pconstraint. Negated constraints
simply solve their child constraints and invert the result, converting succeed to fail, fail to succeed,
and non-trivial constraints to their negations. Conjunctions and disjunctions are negated using De
Morgan’s laws in the usual way. Consider the following listing:

1 (define (solve-noto g s ctn resolve delta)

2 (let-values ([(d s2) (solve-constraint (noto g) s succeed succeed succeed)])

3 (solve-constraint succeed (store-constraint s (noto d)) ctn resolve

(conj delta (noto d)))))

3This is analogous to the newly extended prefix of the substitution in association list based implementations, but represented
using explicit first-order goals rather than a list of bindings.

miniKanren’23

Goals as Constraints miniKanren 2023, September 8 2023, Seattle, WA, USA

The negation of g, (noto g), is solved recursively on line 2 and then negated before being returned
to the store and simultaneously to the delta constraint on line 3. Note that the initial call to
solve-constraint is invoked with ctn, resolve, and delta all set to succeed. This creates a distinct,
"hypothetical" context in which the solver can evaluate the positive version of the goal in isolation
and without reference to future conjuncts of the original negated goal. This results in the returned
delta, d, containing only changes made by the positive version of goal g and not by the right-hand
conjuncts of the original goal. As a result, d can simply be negated and returned to the store before
further solving. Had 𝑦 = 1 been passed as ctn, for example, it would have returned conjoined to d,
and subsequently negated to 𝑦 ≠ 1 before being returned to the store, which is not correct.
Before proceeding with the remaining constraints, two remarks are in order. First, it is now

possible to return, briefly, to the solve-constraint function and its handling of succeed:

1 (define (solve-constraint g s ctn resolve delta)

2 (cond

3 [(succeed? g)

4 (if (succeed? ctn)

5 (if (succeed? resolve)

6 (values delta s)

7 (let-values ([(d s) (solve-constraint resolve s succeed succeed

delta)])

8 (if (fail? d) (values fail failure)

9 (values delta s))))

10 (solve-constraint ctn s succeed resolve delta))]

11 ...)))

When g is succeed, constraints are first pulled from ctn on line 10, as described earlier. Once
ctn has been exhausted, the constraints removed from the state to be rechecked as a result of the
solving process, contained in resolve, are solved on line 7. However, if resolve is solved, only the
original delta is returned on line 9, not the subsequently solved d. This change ensures that during
negation solving, constraints removed from the store do not pollute the returned delta and become
incorrectly negated.4 Finally, once all future constraints have been exhausted, the delta values are
returned along with the state on line 6.

3.4 Disjunction
Consider the following listing:

1 (define (solve-disj g s ctn resolve delta)

2 (let-values ([(d-lhs s-lhs) (solve-constraint (disj-lhs g) s succeed succeed

succeed)])

3 (cond

4 [(fail? d-lhs) (solve-constraint (disj-rhs g) s ctn resolve delta)]

5 [(succeed? d-lhs) (solve-constraint succeed s ctn resolve delta)]

6 [else (let-values ([(d-rhs s-rhs) (solve-constraint (disj-rhs g) s succeed

succeed succeed)])

7 (if (fail? d-rhs)

8 (solve-constraint succeed s-lhs ctn resolve (conj delta d-lhs))

9 (solve-constraint succeed (store-constraint s (disj d-lhs d-rhs)) ctn

resolve (conj delta (disj d-lhs d-rhs)))))])))

4Note that this procedure necessarily throws away the work done to solve rechecked constraints. We are currently
experimenting with alternative designs that retain more of that work.

miniKanren’23

miniKanren 2023, September 8 2023, Seattle, WA, USA Evan Donahue

solve-disjunction first solves the left-hand disjunct on line 2. Like the negation solver, ctn, resolve,
and delta are all succeed, which ensures that the returned constraints reflect only simplifications of
constraints contained within the disjunct.
If the left-hand disjunct fails, the solver simply solves the right-hand disjunct on line 4. If it

succeeds, the rest of the disjuncts can be skipped. Otherwise, the right-hand side is solved on line
6 and it is disjoined with the left-hand side and returned to the store on line 9. If the right-hand
side fails, the results of the left-hand side are returned to the store, reusing the state produced by
solving the left-hand side as an optimization on line 8.
Stepping back, the disjunction constraint finally makes clear what it means to view constraint

solving as search in this instance. Each disjunction must search among its child disjuncts for at
least one that does not fail in the current state. When the state moves down the right or left-hand
branches of the disjunction constraint, it accumulates one child disjunct. When it passes through
all conjoined disjunction constraint contained in ctn or resolve, it will have ensured that there is at
least one subset of disjuncts that are mutually satisfiable in the current state. Failure to find such a
subset proves the unsatisfiability of the store, and the branch fails.
Unsatisfiability is relatively easy to detect as it only requires finding one non-failing disjunct

in each disjunction. Ensuring that unifications entailed by the constraint store are added directly
to the substitution, such as when booleano is conjoined with 𝑥 ≠ ⊤ and therefore unifies 𝑥 = ⊥,
requires that additional disjuncts be checked. The simplified implementation above naively checks
all disjuncts, but work is ongoing to investigate possible benefits of laziness in the disjunction
solver.

3.5 Matcho
In most cases in the current implementation, the pattern matching form matcho is used in place of
fresh. matcho destructures tree terms and binds their elements to variables in a new lexical scope as
in the following example:

(matcho ([xxs (x . xs)]) ...)

This form destructures xxs and binds its head and tail to x and xs, respectively, before processing
child goals. The internal representation of a matcho goal consists of a list of free variables on which
it depends, a list of bound values, and a closure for processing the final patterns. Solving simply
involves looking up the free variables, adding them to the bound variable list as they become bound,
and suspending in the constraint store on encountering a variable that is still free in the current
substitution. This procedure guarantees that constraints will only run until they exhaust the bound
values in the substitution, preserving the completeness of the search.

fresh can also be used in constraints, although it is more difficult to optimize. For that reason
it is usually preferred to write constraints with the pattern matching form. Opaque fresh goals
must expand until they yield a disjunction containing at least one non-failing disjunct. Whereas
the stream interpreter would create two branches on such a disjunction, the constraint interpreter
suspends the computation in the constraint store.

3.6 Attributed Variables
Once the constraints have been sufficiently solved, they must be added back to the constraint store
so the search can progress. For simple implementations that recheck all constraints at each step,
this poses no issue. However, many implementations use a version of attributed variables whereby
constraints in the store are indexed by the variables on which they depend. When those variables
are modified, either by unification or by the addition of another constraint, the constraints already

miniKanren’23

Goals as Constraints miniKanren 2023, September 8 2023, Seattle, WA, USA

indexed under that variable can be rechecked without wasting effort on unrelated constraints. The
only question, then, is on which variables does a given constraint depend?

With the exception of disjunction, this question is mostly straightforward. Primitive constraints
such as unification depend on all of their variables, while negation and conjunction depend on all
of the attributed variables of their children. Because the store itself can be viewed as a conjunction
of all the constraints it contains, storing a conjunction directly in the store can be simplified to
storing all of its children independently.
Disjunctions are the more difficult case, and the variables on which they depend themselves

depend on the level of solving performed. For the simple solver above, it is possible to attribute
disjunctions to all of their child goals’ variables. However, lazy implementations can get away with
fewer. Work on this subject remains ongoing.

Once the attributed variables have been determined, the current implementation copies pointers
to the constraint to each variable index in the store. Constraints are stored separately to avoid stale
constraints proliferating in the store.

4 RELATEDWORK
Within the domain of miniKanren research, this paper is most closely in conversation with prior
work on constraint authoring frameworks [1, 11]. Unlike these approaches, which facilitate the
development of domain specific constraints that make heavy use of specialized representations,
this paper presents a strategy for leveraging only the core operators of miniKanren to express a
wide variety of constraints that have to this point required such specialized implementations. The
benefit of the present approach is that it greatly lowers the barrier to authoring constraints that
can be expressed within this framework not only by uniformly handling constraint optimization
and interoperation, but also by allowing the expression of constraints in miniKanren, which is
particularly well suited to expressing constraints on structures that are themselves necessarily
expressible in miniKanren. That said, much work remains to be done on bridging the gap and
allowing such constraint authoring frameworks to interoperate with the system presented in this
paper to allow for the expression of constraints that lie outside of miniKanren’s core representational
facilities.
More generally, the solving of simultaneous equations and disequations within the framework

of logic programming has developed an extensive literature since its introduction [8]. This early
work has been surveyed in Comon [9]. The central design of the solver proposed in this paper
in particular generalizes the disequality constraint solver originally proposed by Bürckert [5]
and further elaborated upon in Buntine and Bürckert [4], which was subsequently adapted for
miniKanren by Byrd [6].
The strategy for avoiding unnecessary constraint checking by assigning constraints to specific

variables that may make them unsatisfiable if bound or further constrained is based on what can
be viewed as an implementation of attributed variables, albeit in a functional style [17]. Attributed
variables, roughly, offer a general means to associate additional information with specific variables,
and have found particular application in extending logic programming languages with constraint
systems, as is being done here [12, 13]. The original approach to attributing disequalities to variables
on which this paper builds originated with Ballantyne et al [2] to the best of our knowledge.

This paper also engages to a lesser extent with previous work in miniKanren concerned with the
semantics of negation, universal quantification, and fresh [7, 14, 16, 18, 19]. In particular, it offers a
practical implementation of negation for constraint authoring that would be interesting to compare
with more complex forms of negation studied in previous work.

miniKanren’23

miniKanren 2023, September 8 2023, Seattle, WA, USA Evan Donahue

5 CONCLUSION
This paper introduced an extension to miniKanren that allows for the interpretation of goals as
constraints, and used this extension to implement a wide variety of useful constraints. Much work
remains to be done on the constraint system itself, from further studying the effects of laziness to
exploring integrations with solvers that require specialized representations. Finally, given the range
of constraints this and future related systems make it possible to express, however, it is also worth
wondering what kind of applications they may enable, from variations on relational interpretation
to as yet unresearched domains. In particular, one of the motivating cases driving this research has
been the prospect of running complex relations such as relational interpreters and relational type
inferencers as constraints, and studying the effect this might have on the ability to compose such
relations efficiently by letting the constraint system decompose and reorder them. Further work on
the current implementation is required before such experiments can be undertaken.
Because this constraint solver reuses representations and algorithms that already exist in most

miniKanren implementations, and particularly those that already use first order representations
of goals, and moreover because this solver replaces much of the code dedicated to implementing
individual constraints, the implementation burden on top of an existing miniKanren system is
relatively minimal. It is therefore our hope that this work can help facilitate the more rapid
exploration and prototyping of new types of constraints and the new applications they enable.

6 ACKNOWLEDGMENTS
We thank Will Byrd for discussions of early versions of this idea, Evgenii Moiseenko for clarifying
some points of previous work, and Greg Rosenblatt for identifying an important edge case. We also
thank the anonymous reviewers for their suggestions.

REFERENCES
[1] Claire E Alvis, Jeremiah J Willcock, Kyle M Carter, William E Byrd, and Daniel P Friedman. 2011. cKanren: miniKanren

with Constraints. (2011).
[2] Michael Ballantyne et al. 2020. Faster miniKanren [Source Code]. (2020). https://github.com/michaelballantyne/faster-

miniKanren
[3] David C Bender, Lindsey Kuper, William E Byrd, and Daniel P Friedman. 2009. Efficient Representations for Triangular

Substitutions: a Comparison in MiniKanren. Unpublished manuscript (2009).
[4] Wray L Buntine and Hans-Jürgen Bürckert. 1994. On Solving Equations and Disequations. Journal of the ACM (JACM)

41, 4 (1994), 591–629.
[5] Hans-Jürgen Bürckert. 1988. Solving disequations in equational theories. In 9th International Conference on Automated

Deduction: Argonne, Illinois, USA, May 23–26, 1988 Proceedings 9. Springer, 517–526.
[6] William Byrd. 2009. Relational Programming in Minikanren: Techniques, Applications, and Implementations. Ph. D.

Dissertation. Indiana University.
[7] William. E. Byrd. 2013. Relational Synthesis of Programs. webyrd.net/cl/cl.pdf
[8] A Colmerauer. 1984. Equations and Inequations on Finite and Infinite Trees. In Proc. of the International Conference on

Fifth Generation.
[9] Hubert Comon. 1991. Disunification: a Survey. (1991).
[10] Evan Donahue. 2021. Guarded Fresh Goals: Dependency-Directed Introduction of Fresh Logic Variables. miniKanren

and Relational Programming Workshop (2021).
[11] Daniel P Friedman and Jason Hemann. 2017. A Framework for Extending microKanren with Constraints. In Proceedings

of the 2017 Workshop on Scheme and Functional Programming.
[12] Christian Holzbaur. 1990. Specification of Constraint Based Inference Mechanisms Through Extended Unification. Ph. D.

Dissertation. University of Vienna.
[13] Christian Holzbaur. 1992. Metastructures vs. Attributed Variables in the Context of Extensible Unification. In Pro-

gramming Language Implementation and Logic Programming: 4th International Symposium, PLILP’92 Leuven, Belgium,
August 26–28, 1992 Proceedings 4. Springer, 260–268.

[14] Ende Jin, Gregory Rosenblatt, Matthew Might, and Lisa Zhang. 2021. UniversaL Quantification and Implication in
MiniKanren. In miniKanren and Relational Programming Workshop. 12.

miniKanren’23

https://github.com/michaelballantyne/faster-miniKanren
https://github.com/michaelballantyne/faster-miniKanren
webyrd.net/cl/cl.pdf

Goals as Constraints miniKanren 2023, September 8 2023, Seattle, WA, USA

[15] Andrew W Keep, Michael D Adams, Lindsey Kuper, William E Byrd, and Daniel P Friedman. 2009. A Pattern Matcher
for MiniKanren or How to Get into Trouble with CPS Macros. Technical Report CPSLO-CSC-09-03 (2009), 37.

[16] Dmitry Kosarev, Daniil Berezun, and Peter Lozov. 2022. Wildcard Logic Variables. In miniKanren and Relational
Programming Workshop.

[17] Serge Le Huitouze. 1990. A New Data Structure for Implementing Extensions to Prolog. In Programming Language
Implementation and Logic Programming: International Workshop PLILP’90 Linköping, Sweden, August 20–22, 1990
Proceedings 2. Springer, 136–150.

[18] Weixi Ma and Daniel P Friedman. 2021. A New Higher-Order Unification Algorithm for _Kanren. In miniKanren and
Relational Programming Workshop. 113.

[19] Evgenii Moiseenko. 2019. Constructive Negation for MiniKanren. In Proceedings of the miniKanren and Relational
Programming Workshop.

[20] Gregory Rosenblatt, Lisa Zhang, William E Byrd, and Matthew Might. 2019. First-Order MiniKanren Representation:
Great for Tooling and Search. In Proceedings of the miniKanren and Relational Programming Workshop. 16.

miniKanren’23

	Abstract
	1 Introduction
	2 Interface
	2.1 |constraint|: miniKanren Goals as Constraints
	2.2 |pconstraint|: Primitive Constraint Constructor
	2.3 |noto|: Negating Goals and Constraints

	3 Implementation
	3.1 Conjunction
	3.2 Unification
	3.3 Negation
	3.4 Disjunction
	3.5 Matcho
	3.6 Attributed Variables

	4 Related Work
	5 Conclusion
	6 Acknowledgments
	References

