
Efficient Variational Inference in miniKanren with Weighted
Model Counting

EVAN DONAHUE, University of Tokyo, Japan

We extend miniKanren with a collection of primitives for describing probabilistic generative models. We further

describe modifications to the language’s stream-based implementation that permit the efficient variational

learning of such models via weighted model counting. We begin with a naive implementation that requires

minimal changes to the core miniKanren implementation, and then describe two modifications to achieve

practical levels of efficiency. The first alters the search to factorize conditionally independent conjuncts,

avoiding unnecessary combinatorial explosion. The second modifies tabling to recover standard probabilistic

dynamic programming algorithms such as Viterbi, forward-backward, and Baum-Welch. The end result is

a simple extension to miniKanren that is nevertheless efficient enough to be of use in writing practical

probabilistic relational programs.

ACM Reference Format:
Evan Donahue. 2022. Efficient Variational Inference in miniKanren with Weighted Model Counting. In . ACM,

New York, NY, USA, Article 5, 22 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Probabilistic programming languages (PPLs) augment traditional programming languages with

probabilistic constructs that allow for the economical expression of probabilistic models. Such

languages enable the straightforward construction and use of models that are otherwise difficult to

implement correctly. Probabilistic logic programming languages in particular permit the specifica-

tion of models describing the kinds of complex, discrete structures that frequently admit concise

representations in logic programming languages [18]. In this paper, we introduce a probabilistic

extension of miniKanren, an embedded relational programming language, with the twin aims of

making the implementation efficient enough for practical use yet simple enough to be easy to

implement.

Even among logic programming languages, miniKanren has excelled in handling certain complex

discrete structures—particularly programs—in the context of work on relational interpretation [5].

This efficacy is due in part to miniKanren’s unique stream-based, interleaving search and pure

relationality. As a result of miniKanren’s unique position among logic programming languages, it is

reasonable to conjecture that a probabilistic extension of miniKanren would likewise enable as yet

unforeseen applications even among existing probabilistic logic programming languages [6, 20].

As a first step towards novel applications of probabilistic relational programming, this paper

reproduces several classical algorithms pertaining to probabilistic graphical models including

Gaussian mixture modeling, K-Means clustering, the Viterbi algorithm, and the Baum-Welch

algorithm in order to demonstrate the utility of the proposed probabilistic extensions for solving

practical and well understood probabilistic modeling tasks. To accomplish this, we describe a simple

yet efficient probabilistic extension to miniKanren that employs variational inference via weighted

model counting (WMC). Variational methods are fast, deterministic optimization-based methods

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

miniKanren 2022, September 11 2022, Ljubljana, Slovenia
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

miniKanren 2022, September 11 2022, Ljubljana, Slovenia Evan Donahue

that, while offering weaker accuracy guarantees than sampling-based methods, have nevertheless

proven effective in other PPLs [1, 14]. WMC describes a strategy for performing probabilistic

inference that conforms well to the existing contours of miniKanren’s standard stream-based

implementation. Answer states returned by run correspond to models and each model can be

assigned a weight using special probabilistic goals, making the implementation relatively simple.

This paper makes three main contributions: (1) a minimal extension to the miniKanren state

data structure to allow for WMC, (2) an extension to miniKanren streams that efficiently factorizes

conditionally independent conjuncts, allowing for the efficient expression of models such as

Gaussian mixture models and K-Means, and (3) an extension to tabling that recovers analogues of

the standard dynamic programming algorithms for hiddenMarkovmodels (HMMs) and probabilistic

context-free grammars (PCFGs) such as the Viterbi, Baum-Welch, forward-backward, and inside-

outside algorithms.

The remainder of this paper is divided into six sections. Section 2 describes related work in

probabilistic logic programming and related areas. Section 3 offers an overview of the proposed

extensions. Section 4 describes the implementation details of each successive extension. Section 5

describes an empirical evaluation of the proposed extensions. Section 6 presents a discussion of the

results and offers suggestions for future work.

The probabilistic extensions described in this paper are part of the fully-featured SmallKanren

implementation of miniKanren in Smalltalk, which is available through the author’s website. All

examples in this paper are written in Scheme for greatest legibility to the miniKanren community,

however, these should be regarded as pseudocode transliterations of the original Pharo Smalltalk

implementation.

2 RELATEDWORK
Even setting aside the wide range of contemporary research on PPLs more generally, the subfield

of probabilistic logic programming alone has a long history [15, 16, 22]. Several lines of research

in particular bear on the results discussed in this paper. PRISM [20], developed an approach to

aggregate tabling for machine learning [25] in a fashion analogous to the aggregate streams

described in Section 4.3, with differences to be discussed in that section. DICE [10], while not a

logic programming language, pioneered one of the primary optimization techniques used here to

factorize inference in conditionally independent conjuncts. Early versions of Dyna [9] placed an

emphasis on recovering many of the same dynamic programming algorithms discussed here using

an extension of Datalog. Finally, the goals of making variational inference easy to access extend

beyond PPLs per se to frameworks such as Pomegranate [21], although the implementation details

differ correspondingly.

Within work on miniKanren specifically, the most natural comparison is with probKanren [26],

which offers a comparable syntax for specifying, at least at present, similar classes of probabilistic

models. probKanren differs primarily in its implementation, which is based on a sequential Monte

Carlo sampling strategy that is slower but potentially more accurate. As performance is not a

stated goal of probKanren, it does not prioritize integration with tabling or achieve the exponential

speedups that are the focus of this paper, although it does manage a comparably simple imple-

mentation without pushing the burden of explicitly managing the model parameters outside of

miniKanren onto the user, as is done in this paper to keep the implementation simple.

Beyond probKanren, Zhang et al. [24] demonstrates an alternative configuration of miniKanren

search and probabilistic computation by learning from the language’s internal representations

a heuristic function to guide the search behavior. Although the goal of specifying probabilistic

models differs, Section 6 discusses some potential confluences between these two lines of work.

The miniKanren implementation described here corresponds most closely to that described in Byrd

WMC in miniKanren miniKanren 2022, September 11 2022, Ljubljana, Slovenia

[4], particularly including its implementation of tabling, although see Section 4.4 for a discussion

of some differences.

3 OVERVIEW OF PROBABILISTIC EXTENSIONS
This section offers an overview of the probabilistic extensions to miniKanren, the implementations

of which will be described in Section 4. We begin by describing the syntactic extensions needed to

express probabilistic models. We then describe three common types of queries and two inference

strategies for answering those queries that we have implemented in miniKanren.

3.1 Modeling
We extend the language with two new features: a collection of primitives representing exponential

family probability distributions such as Bernoulli, categorical, and normal, and the observe goal for

associating data with the distributions defined by those primitives. For the purposes of exposition,

we assume the existence of a run macro analogous to the usual run ∗, but which returns the state

data structure that contains the substitution, constraints, and associated data, rather than reified

query variables. This will make it easier to define operations other than reification on the answer

stream that are necessary for probabilistic analysis.

The following example, which calculates the likelihood of a single toss of a fair coin coming up

heads, will clarify the relationship between these two language features:

(define-values (c o i n head s) (values (bernoulli .5) 1))

(run () (observe c o i n head s))

In this example, (bernoulli 0.5) defines a Bernoulli distribution with p = 0.5, representing
the outcome of a fair coin toss. observe associates a single observation of a "heads"

1
with the

distribution representing the coin presumed to have generated that outcome. Running this program

will return a single state with an associated likelihood score of 0.5, representing the likelihood

of a fair coin yielding a heads. In the remainder of this paper, we will refer to the collection of

distributions defined and used in a given miniKanren program (in this case only the Bernoulli

distribution labeled coin) as the "model parameters." Using these parameters to evaluate data and

using data to optimize these parameters will be the primary objectives of inference.

Conjoined observe statements represent successive events, and any given state, interpreted

as a conjunction of some subset of the overall program’s goals, consequently represents a joint

distribution over the observe goals it conjoins.

(observe c o i n head s)
(observe c o i n head s)

This program fragment represents the successive observation of two flips of the same fair coin

defined above, with each observation coming up heads. The current implementation adopts the

mean-field assumption that each observation is conditionally independent of the others. It therefore

calculates the likelihood of the above conjunction as the product of the likelihoods of each individual

observation, or 0.5 × 0.5 = 0.25. Observing a 0 probability event causes the implementation to fail

early in the corresponding branch, as a 0 probability state can have no influence on subsequent

calculations in other branches of the search.

Disjunction, by contrast, represents a probabilistic choice, the semantics of which depend on

the inference strategy employed. Consider the following program representing a coin flip that

determines from which of two normal distributions from which to observe a real-valued data point:

1
Bernoulli distributions in this implementation produce 1 or 0, which can be considered "heads" and "tails" by convention.

miniKanren 2022, September 11 2022, Ljubljana, Slovenia Evan Donahue

(define-values (t a i l s d a t a p o i n t n0 n1)
(values 0 0 (normal −1 1) (normal 1 1)))

(run (z)
(observe c o i n z)
(conde

[(== z t a i l s) (observe n0 d a t a p o i n t)]
[(== z head s) (observe n1 d a t a p o i n t)]))

As will be discussed in Section 4, disjunction may be interpreted either as the summation of

each disjoined branch or as the selection of the single branch with the maximum likelihood. In

order for either interpretation to be fully well defined, however, it is necessary that, for a conde

clause that branches on an observed variable, there must be exactly one disjunct for each element

of the support of the distribution associated with that variable. In this case, because the support

of a Bernoulli distribution consists of 0 and 1, there must be two branches in the conde clause

corresponding to tails and heads, respectively. This constraint ensures that each conde that returns

multiple answers can be viewed as observing an event generated by the distribution in question

and making a probabilistic decision based on the outcome. conde clauses that return a single answer

due to mutually exclusive branches, such as those that iterate through a fully ground list, need not

have probabilistic choices associated with them.

Intuitively, a probabilistic miniKanren program that obeys this constraint on conde can be viewed

in terms of a "generative story." In the same sense that base miniKanren can be viewed as "gener-

ating" discrete structures that satisfy the constraints described in a given program, probabilistic

miniKanren can be viewed as generating a dataset and associated latent variables subject to the

constraints of the actually observed data and the probabilistic model. The above program describes

a Gaussian mixture model or equivalently K-Means model used for clustering real-valued data

points into two clusters, each corresponding to one of the normal distributions. For each datapoint,

a coin is flipped and, based on the result, one of two normal distributions is sampled, conceptually

"generating" a dataset of samples from the pair of normal distributions along with the latent variable

representing the decision of from which distribution each datapoint arose. If the above goal is

evaluated for each datapoint, and the results are conjoined, the likelihood of the final program

corresponds to the likelihood that a given coin and pair of normal distributions generated the

observed dataset. By varying the query used, the same program can serve to compute a likelihood,

calculate missing values, or optimize the model parameters, as discussed in more detail in the next

section.

3.2 Querying
Given a model that includes the model parameters and the program relating them to data via the

observe interface, there are many different possible queries one could ask of the model. Loosely

following the framework outlined in Rabiner [17], this paper will concern itself, for expository

purposes, with three basic types of queries—likelihood, missing values, and training—and two

inference strategies—argmax and summation.

The likelihood query returns a single score representing the likelihood of the data given the

current model parameters. If z were bound to heads in the above example, a likelihood query would

return the likelihood that datapoint was generated by the normal distribution associated with an

observation of heads. If z were free, a likelihood query would either return the likelihood of the

most likely category to which the datapoint belongs, corresponding to the most likely assignment

of z and its corresponding branch selection in the conde, or the sum of the likelihoods of both

possibilities, depending on whether the argmax or summation strategy was used. These strategies

WMC in miniKanren miniKanren 2022, September 11 2022, Ljubljana, Slovenia

correspond to the "hard" and "soft" assignments that differentiate a Gaussian mixture model from

the related K-means clustering algorithm. Such a query can be useful in determining whether a

particular datapoint is well explained by the model.

The missing value query attempts to fill in unbound logic variables with the most probable

variable assignments. In the case of the Gaussian mixture model, this corresponds to determining

the cluster z to which a given datapoint most likely belongs. Under the argmax strategy, this

assignment corresponds to the binding in the most likely answer. Under the summation strategy,

this assignment corresponds to the overall most likely assignment for each variable as determined

by summing up its total likelihood across all possible answers. In the case of this GMM, because

the z variable for a single datapoint is only observed once (each datapoint in a full implementation

would be associated with its own z), these strategies produce the same answer. Note that, due to

miniKanren’s relationality, it is possible to leave arbitrary logic variables free in the usual way,

and answer a variety of different probabilistic queries. Although this paper will describe the usual

directionalities of these models, any permutation of ground and free variables can be computed.

The training query is an iterative query, rerunning the miniKanren program repeatedly and

attempting to find the locally optimal values for the model parameters by tuning them to maximize

the likelihood of a given dataset. Under the argmax strategy, this query corresponds to tuning the

model parameters to optimize the likelihood of the most likely variable assignment, corresponding

to a "hard EM" strategy, while the summation strategy corresponds to the "soft EM" strategy of

tuning the model parameters to maximize the average likelihood of all possible variable assignments.

4 IMPLEMENTATION
In this section, we describe the implementation of the probabilistic primitives introduced in Section

3. We begin with a simple and fully relational but inefficient implementation. We then describe

two optimizations that, while not relational, taken together, recover the standard efficient dynamic

programming solutions to optimizing probabilistic models in a variational framework as well

as enable the efficient querying of several other types of models. We use a simple HMM for

weather forecasting as the running example in most of this section to motivate and illustrate the

implementation details.

4.1 Hidden Markov Model for Weather Forecasting
A hidden Markov model, or HMM, is a probabilistic model that describes a sequence of unobserved

states, each of which produces an observable phenomenon. In this instance, the sequence of states

is that of the daily barometric pressure, which cannot be observed directly without a barometer,

and the observations are sunny or cloudy days generated in part by the barometric pressure. On

any given day, the barometric pressure may be high or low and the weather may be sunny or

cloudy. High pressure systems are more likely to yield sunny days, while low pressure systems are

more likely to indicate cloud cover and storms. Given a barometer, it is possible to measure the

barometric pressure and on that basis predict whether it will be a sunny or a cloudy day. However,

lacking a barometer, it is still possible to observe the weather of the past several days and estimate

the likelihood of being in the middle of a high or low pressure system, using that estimate as the

basis for a prediction of the day’s weather. In particular, assume the true weather system conforms

to the following model:

miniKanren 2022, September 11 2022, Ljubljana, Slovenia Evan Donahue

During a high pressure system, the following day will remain within the high pressure system

with a probability of 0.7, andwill transition to a low pressure systemwith probability 0.3. Conversely,

a low pressure system will remain low pressure with probability 0.8, and transition back into a

high pressure system with probability 0.2. During a high pressure system, there is a 0.9 probability

of emitting sun and a 0.1 probability of emitting cloud cover. During a low pressure system, there

is a 0.6 probability of cloud cover and 0.4 of sun.

We can represent this weather system over the course of three days, on which the observed

weather was sunny, cloudy, and cloudy, with the following program:

1 (define-values (low c l o udy h igh sunny) (values 0 0 1 1))
2 (define-values (h igh− t low− t) ;Transition distributions
3 (values (bernoulli 0.7) (bernoulli 0.2)))
4 (define-values (high−e low−e) ;Emission distributions
5 (values (bernoulli 0.9) (bernoulli 0.4)))
6 (define o b s e r v a t i o n s (l i s t sunny c l o udy c l o udy)) ;Data
7

8 ;prev-t - Transition distribution of previous timestep
9 ;states - List of states
10 ;observations - List of observations
11 (define (hmm pr ev− t s t a t e s o b s e r v a t i o n s) ;Given the transition ,
12 (conde ;states , and observations ,
13 [(== s t a t e s '()) ;either we have reached the
14 (== o b s e r v a t i o n s '())] ;end of the observations ,
15 [(fresh (c u r r− s r e s t− s cu r r−o r e s t− o)
16 (== s t a t e s (cons c u r r− s r e s t− s)) ;or we take the latest state
17 (== o b s e r v a t i o n s
18 (cons cu r r−o r e s t− o)) ;and observation , compute the
19 (observe p r e v− t c u r r− s) ;transition probability ,
20 (conde ;and randomly choose
21 [(== c u r r− s low) ;a low
22 (observe low−e cu r r−o)
23 (hmm low− t r e s t− s r e s t− o)]
24 [(== c u r r− s t a t e h igh) ;or high state from which to
25 (observe high−e cu r r−o) ;observe an emission
26 (hmm high− t r e s t− s r e s t− o)]))])) ;and transition to next.
27

28 (run (s t a t e s)
29 (hmm high− t s t a t e s o b s e r v a t i o n s)) ;Start in high state for simplicity

Listing 1. Weather forecasting HMM

WMC in miniKanren miniKanren 2022, September 11 2022, Ljubljana, Slovenia

At each state, the HMM observes the current state given the transition probability distribution

corresponding to the previous state, observes an emission depending on the observed current state,

and transitions to the subsequent state using the transition distribution associated with the current

state. For simplicity, it is assumed that observations begin in the high pressure state, hence high-t
is passed in as the first prev-t, representing the previous state’s transition distribution.

2

In the following sections, we describe a naive implementation of the inference procedures as

well as two optimizations involving aggregating substreams and tabling.

4.2 Naive Implementation
4.2.1 Likelihood &Missing Values. The simplest aspect of the system to implement is the likelihood

calculation, which supplies the information necessary to answer both the likelihood and missing

values queries with light post-processing of the normal miniKanren answer stream. The implemen-

tation will require extending the state, the central data structure containing the substitution and

constraint store, with a new term representing the likelihood score, which is set to 1 by default in a

new state:

(s u b s t i t u t i o n c o n s t r a i n t s l i k e l i h o o d)

Consider the likelihood of observing the sequence sunny, cloudy, cloudy, on three consecutive

days during which the barometric readings were high, low, and low, respectively. The likelihood of

this event would be the product of each transition and corresponding emission, or 0.7 × 0.9 × 0.3 ×
0.6 × 0.8 × 0.6 = 0.054432. In order to compute this, each observe simply multiplies

3
the state’s

current likelihood by the likelihood of the observation given the corresponding distribution:

(define observe (d i s t r i b u t i o n o b s e r v a t i o n)
(lambda (s)

(s e t− l i k e l i h o o d s (∗ (l i k e l i h o o d d i s t r i b u t i o n o b s e r v a t i o n)
(g e t− l i k e l i h o o d s)))))

Each state returned by run will therefore possess a likelihood that is the product of the likelihoods

of every observe statement encountered in the path that state traveled through the search tree.

Observations that are ground or are already bound in the substitution can be handled directly by

computing the likelihood of the value given the model parameters associated with the relevant

distribution. In order to make the observe statement relational in the case where the observed

variable is free, a simple constraint can be added to the store that waits for the variable to be unified

and multiplies the likelihood appropriately at that time.
4
The behavior of a state that returns from

run with unbound but observed variables still in the constraint store is undefined for the purposes

of this paper, although one could imagine a number of ways of interpreting such a constraint,

including dropping it or computing its expected value, depending on the nature of the query.

Using only this extension, it is possible to handle the first four queries in the naive implementation:

likelihood and missing values under both argmax and summation strategies. It is first worth noting,

however, that if all states and observations are ground, then argmax and summation yield the same

result, as only one path through the search tree has a nonzero likelihood. If, however, only the

2
A more general approach might be to define a separate distribution over start states and set it equal to the stationary

distribution of the current model, which describes the likelihood of being in a given state at any given time based on the

current transition probabilities.

3
Code examples in this paper multiply probabilities to most closely correspond to the mathematical identities described,

although in practice a real implementation should work in logarithmic space using logarithmic identities and the log-sum-exp

trick, as is common in probabilistic applications.

4
For distributions over complex terms that may contain additional free variables, it will be necessary to suspend until all

variables are bound.

miniKanren 2022, September 11 2022, Ljubljana, Slovenia Evan Donahue

observations sunny, cloudy, cloudy, are observed, and not the barometric states, it is necessary to

take into account all possible assignments to the state variables in computing the likelihood.

Under the argmax strategy, the likelihood of the observation sequence is defined as the likelihood

of the most probable single assignment of state variables. To compute the likelihood of the most

probable variable assignment, simply fold the stream of answers returned by run, retaining the

single answer with the maximum likelihood:

(reduce max (map g e t− l i k e l i h o o d (run . . .)))

The likelihood of this answer is the likelihood of the data as a whole under this strategy.

Under the summation strategy, the likelihood of the observation sequence is the sum of the

likelihoods of that sequence under all possible assignments to the state variables. To compute this

likelihood, simply sum the likelihoods of all states returned by run:

(reduce + (map g e t− l i k e l i h o o d (run . . .)))

For missing values, the argmax strategy defines the expected value of the state variables to be

their assignment in the state with the highest likelihood. To compute this, simply fold the stream

of answers and return the highest likelihood state:

(reduce (lambda (a b) (if (< (g e t− l i k e l i h o o d b) (g e t− l i k e l i h o o d a)) a b))
(run . . .))

The summation strategy has an unusual interpretation from the perspective of the standard

semantics of miniKanren, corresponding in the HMM to the posterior decoding. This strategy

defines the value of each state variable as the value with the greatest total likelihood across all

possible states. To compute this, for each state variable and for each potential value it attains in any

state, sum the likelihoods of the states in which that variable took that value and assign the variable

to the value with the highest resulting likelihood. Free logic variables make the interpretation of

this strategy particularly tricky. Note too that because this assignment is defined individually per

variable, the resulting assignments may in the general case not match the assignments in any single

returned state, and therefore may not in fact be a valid solution to the constraints of the miniKanren

program. In this simple example, however, the assignments will be valid since no set of assignments

can fail, they just may not match the argmax solution of the most likely joint assignment.

4.2.2 Training. The only queries remaining for the naive implementation are those for optimizing

the model parameters given a set of training data. For these queries, in addition to the likelihood

computed above, it will also be necessary to keep track of the count of the number of times each

distribution was observed and the values observed from it. We extend the state with another term

representing an association list relating each distribution to two objects, a vector of running counts

of sufficient statistics associated with observations of the distribution and the current estimates

for the optimized model parameters. Note that for streaming large amounts of data through a

miniKanren implementation, an extension that avoids needing to bind every cell of a list in the

substitution in order to destructure it, such as Donahue [8] or Ballantyne [2], will be useful to avoid

an unbounded memory leak when iterating over data points.

(s u b s t i t u t i o n c o n s t r a i n t s l i k e l i h o o d
((d i s t r i b u t i o n . (c o u n t s . p a r ame t e r− e s t ima t e s)) . . .))

distribution is an identifier corresponding to a specific instantiation of a distribution using the

bernoulli, normal, or other constructors. This can be a globally unique integer, or perhaps the

unique object identity of a new object in systems that support this.

counts represent a summary of the values observed in association with the given distribution

that will be used in generating new estimates for the model parameters. Each exponential family

WMC in miniKanren miniKanren 2022, September 11 2022, Ljubljana, Slovenia

distribution has the property that all of the information necessary to estimate its parameters can

be summarized by a weighted sum of statistics derived from the observed values associated with

it. In the case of the Bernoulli distribution, it is enough to know how many heads and tails were

observed in order to estimate the probability of the coin. In this case, those outcomes correspond

to how many times each state transitioned into each successive state and how many times each

type of weather was observed in each state. The form of the counts will be specific to each type of

distribution.

parameter−estimates is a record containing the current best estimates of the parameter values cor-

responding to a particular distribution, such as the weight of the coin corresponding to a Bernoulli

distribution. The expectation maximization algorithm used to estimate model parameters is iterative,

and will incrementally update the model parameters associated with each distribution on every itera-

tion. For example, beginning with a fair coin distribution of (bernoulli 0.5) for parameter−estimates ,
if 6 heads and 4 tails are observed, parameter−estimates will become (bernoulli 0.6), corresponding
to the newly maximized probability estimate. In order to find the final estimate for each state

transition and emission distribution, the programmer can look up the distribution identifier in this

association list and read out the model parameters of its optimized estimate.

As with the previous calculations, if the states are observed directly in the data using a barometer,

then the argmax and summation strategies converge. This is the fully supervised learning case,

and in the example above a single state with the following counts is returned:

(' h igh− t . (<1 1> . ('bernoulli .7)))

(' l ow− t . (<1 0> . ('bernoulli .2)))

('high−e . (<0 1> . ('bernoulli .9)))

(' low−e . (<2 1> . ('bernoulli .4)))

The vectors expressed in angle brackets correspond to the number of tails and then heads

observed in association with each distribution. Applying a maximum likelihood updating strategy,

each count is multiplied
5
by the state’s likelihood of 0.054432 and then the updating equation

specific to the distribution type—
heads

heads+tails in the case of the Bernoulli distribution—is used to

compute the new probability estimates for parameter−estimates , . Counts are zeroed before each

new iteration, although this only matters for unsupervised cases that require more than a single

iteration to converge and that incrementally weight the counts with weights that change on each

iteration, as will be described in Section 4.3:

(' h igh− t . (<0 0> . ('bernoulli .5)))

(' l ow− t . (<0 0> . ('bernoulli 1)))

('high−e . (<0 0> . ('bernoulli 1)))

(' low−e . (<0 0> . ('bernoulli 1)))

The more complex case is that of unsupervised learning, in which only the weather is observed

but not the barometric readings. Given a model that still assumes two barometric states, the task

then is to learn the transition probabilities and the conditional emission probabilities for each state.

This task can be approached with the expectation maximization (EM) algorithm [7]. EM alternates

between two steps, the expectation step (E-step), in which it fills in the most likely values for the

missing barometric states given the current model parameters, and the maximization step (M-step),

in which it maximizes those parameters as in the supervised case. This scheme is guaranteed to

converge to a local optimum in the parameter space, although it may not find the globally best

parameter values to explain the data.

5
In the fully supervised case, multiplication by the state’s likelihood is unnecessary as it simply cancels out. This step will

be relevant, however, when combining multiple states with different likelihoods, as in the unsupervised case.

miniKanren 2022, September 11 2022, Ljubljana, Slovenia Evan Donahue

Each E-step performs the counting procedure described in the supervised case over all possible

combinations of values for the unbound state variables using weighted model counting. Each state

returned by run constitutes a model possessing a weight in the form of its likelihood and counts in

the form of the sufficient statistics associated with each distribution. The counts of each state are

scaled within their states via multiplication by the state’s likelihood to yield weighted counts and
are then combined across states using either the argmax or summation strategy to yield the final

expected values, which are then used to compute the new maximum likelihood estimates:

(reduce max (map (lambda (s) (s c a l e− c o u n t s (g e t− c o u n t s s)
(g e t− l i k e l i h o o d s))) (run . . .)))

(reduce + (map (lambda (s) (s c a l e− c o u n t s (g e t− c o u n t s s)
(g e t− l i k e l i h o o d s))) (run . . .)))

Definition 4.1 (Weighted Count). The weighted count C of a sufficient statistic associated with a

given distribution is equal to the sum of the individual counts ci accumulated across all observations

(ci is 0 when the observation is not associated with that distribution, otherwise a value defined

by the specific distribution) multiplied by the product of likelihoods ℓi accumulated across all

observations of any distribution within conjuncts associated with a given final answer state:

C =
N∏
i=0

ℓi

N∑
j=0

c j

Where N is the total number of conjoined observations encountered by a given state on its path

through the search tree.

The argmax aggregation strategy, in which only the counts corresponding to the most likely state

are used to maximize parameter values, represents so called "hard" EM. The summation strategy, in

which the scaled counts are summed and the total final count is used for maximization, corresponds

to "soft" EM. The maximization step, given the predicted expected values computed under either

strategy, is exactly as described in the supervised case. Because EM is an iterative algorithm, it is

useful to define a run−train interface that executes run repeatedly, each time with new parameter

values, until a specified number of iterations have been performed or until the total likelihood of

the stream ceases to improve more than a small epsilon value.

4.3 Aggregating Conditionally Independent Streams
The naive method described above is complete, correct, and fully relational. Its only drawback

is that it is too inefficient for practical use. Consider the case of performing unsupervised EM

on a large dataset of weather sequences. For each observed sequence, EM must search over all

values for every state in the sequence. In the case of the 3-length observation sequence in the

above example, each expectation step produces an answer stream of 2
3 = 8 possible assignments to

the state variables. Because each datapoint in the dataset when learning over an entire dataset is

conjoined, each of these 8 states would have to be conjoined with every other state produced by

every other training example, leading to a combinatorial explosion. Conjunction in miniKanren

operates like a multiplicative operation on answer stream lengths, assuming no failures. A dataset

with three 3-length Markov chains and two states therefore yields 8
3 = 512 states over which to

search.

It is possible to avoid this combinatorial explosion using the strategy outlined in Holtzen et al.

[10], which observes that conditionally independent events can be handled separately, as they have

no bearing on one another’s optimal assignments. Because the training examples are presumed to

be independent, it is therefore possible to calculate counts and likelihoods individually for each

WMC in miniKanren miniKanren 2022, September 11 2022, Ljubljana, Slovenia

datapoint, resulting in only a single state for each and reducing the exponential problem to a linear

one. In the above example, this reduces to searching effectively 3 ∗ 8 = 24 states. In the work cited,

conditional independence is automatically deduced from the structure of the program, in particular,

values passed to a function must necessarily be conditionally independent of values outside their

present scope, and so it is possible to aggregate the results of a probabilistic function independent

of the behavior of the rest of the program around its call site.

The miniKanren context is slightly more complicated given that, if a fresh logic variable is

passed to a relation, it is still possible for subsequent unifications later in the program to affect the

results returned by the relation. Consequently, the conditional independence of the values passed

to a relation from their calling contexts must be guaranteed by programmer discipline—points at

which the program is to assume conditional independence must be annotated by the programmer,

and the programmer must subsequently refrain from constraining values passed to conditionally

independent goals after those goals have run. Two additional goals make this annotation fairly

intuitive.

The present implementation supplies the programmer with two forms, argmax and marginalize,
that effectively annotate a given relation as conditionally independent of its conjuncts while also

allowing the programmer to specify the inference strategy to be used and offering programmer

conveniences that make the use of such forms more concise than their unannotated equivalents.

Each form wraps a collection of goals and produces a stream that aggregates answers produced by

its subgoals, returning only a single state representing the maximum likelihood state or summation

of states respectively. Both forms accept a discrete distribution, a variable to which to bind its

expected observation, and a function that will be called with every element in that distribution’s

support.
6
Consider lines 19-26 of the above HMM rewritten using the argmax form. Sections which

have been changed are highlighted:

(argmax prev-t curr-s

(lambda (state)
(conde

[((== state low) (observe low−e cu r r−o)
(hmm low− t r e s t− s r e s t− o)]

[((== state high) (observe high−e cu r r−o)
(hmm high− t r e s t− s r e s t− o)])))

Listing 2. Argmax implementation of weather forecasting HMM, lines 19-26

Conceptually, this form is equivalent to a conde over all possible values of prev−t , in this case 0

and 1, in which each branch consists of an observe, a unification of the value with curr−s , and an

invocation of the subgoal returned by the lambda,which will be whichever branch of the inner conde
does not fail when supplied with the given value passed in as state . To make the implementation

efficient and allow it to exploit conditional independence, this form produces one of two streams,

depending on whether argmax or marginalize is used:

4.3.1 Argmax. The argmax stream consists of a state, initially null, and a stream.

(s t a t e s t r e am)

6
If the expected value of the observation is not of interest, such as in the case of a nuisance variable, the logic variable

argument can be made optional with the benefit of a slight performance increase from not having to unify a variable in the

substitution for each value in the support.

miniKanren 2022, September 11 2022, Ljubljana, Slovenia Evan Donahue

stream corresponds to the disjunction of streams returned by the lambda form called with each

value of the distribution’s support. Each time the argmax stream is advanced, much like streams

produced by bind , its internal stream is advanced by one step. If stream produces an answer state,

the likelihood of that state is compared against the likelihood of state (or 0 in the case of null). If

the likelihood is greater, state is replaced with the new state. Once the sub-stream is exhausted,

the argmax stream returns the maximum likelihood state produced by the stream.
7
By returning

only a single aggregate state, this stream avoids the combinatorial explosion that arises from

the multiplicative properties of stream conjunction. Moreover, because the returned state is the

highest likelihood state and the argmax form is presumed to be conditionally independent of

subsequent goals, the logic variable will implicitly be bound to the highest likelihood element of

the distribution’s support.

4.3.2 Marginalize. The summation stream is slightly more complex by virtue of the need to

combine counts and likelihoods from separate states. This will require a stream structure that

separately tracks the substitution, constraint, and individual state likelihood information apart

from the aggregated counts and likelihood:

(s u b s t i t u t i o n c o n s t r a i n t s l i k e l i h o o d
t o t a l− c o u n t s t o t a l − l i k e l i h o o d s t r e am)

The basic outline of the implementation is that, as each new state is produced by stream , its
likelihood is compared with likelihood and, if greater, substitution , constraints , and likelihood are

replaced by those from the new state. The state’s likelihood and counts are added (not multiplied)

to total−counts and total−likelihood . Once stream is exhausted, substitution , constraints , and the

aggregate values are packaged into a new state and returned.

Importantly, however, in order to correctly compute the summed counts, we must make a

modification to the way in which we accumulate the sufficient statistics. The final weighted sum of

the entire program is defined in terms of the counts of each final answer state scaled by its respective

likelihood and summed with the weighted counts of other states as outlined in Definition 4.1. If we

follow the above implementation naively, we will lose the association between an aggregated state’s

counts and its likelihood, which must be used at the end of run to scale those counts. Moreover,

we cannot attempt the scaling at this point because doing so would overcount the likelihoods

accumulated up to this point every time the counts were scaled by future likelihoods, which are a

product of current state likelihoods and subsequent observe likelihoods.

We solve this problem by modifying observe to incrementally reweight our counts so that our

counts are always already weighted. marginalize and run may then simply sum them directly, as

in the implementation described above, without any additional weighting computations.

Definition 4.2 (Incremental Weighted Count). We define the incremental weighted count CM after

M observations, whereM ≤ N , the total number of observations, as:

CM =

M∏
i=0

ℓi

M∑
j=0

c j

Theorem 4.3. For incremental weighted count CM , cumulative product of likelihoods LM , and
count and likelihood cM+1 and ℓM+1 corresponding to observationM + 1, we compute LM+1 andCM+1
incrementally as follows:

7
This assumes a finite stream. Infinite streams could in theory be handled in a variety of ways, including truncation or

periodic production of the currently maximal state, but in general infinite streams will require a more involved approach to

fully account for their probabilistic semantics that is beyond the scope of the current paper.

WMC in miniKanren miniKanren 2022, September 11 2022, Ljubljana, Slovenia

LM+1 = LMℓM+1

CM+1 = cM+1LM+1 + ℓM+1CM

The likelihood LM+1 corresponds to a product of the likelihoods of each observe statement

encountered so far. The incremental weighted count CM+1 corresponds to all past counts CM
multiplied by the current likelihood ℓM+1 plus the product of all past likelihoods LM and the

current count cM+1. This arrangement guarantees that each count is multiplied by each likelihood

only once, avoiding the double counting issue of the naive approach. See Appendix A.1 for a

complete proof.

Corollary 4.4. The incremental weighted count (Definition 4.2) incrementally computes the
weighted count C (Definition 4.1) using the strategy outlined in Theorem 4.3 when N = M .

Theorem 4.3 asserts that the incremental weighted counts are equivalent to the original weighted

count calculation, all else being equal. All that remains is to prove that these incremental counts

can be summed prematurely by the marginalize form without changing the final calculation:

Theorem 4.5. Given a stream of N states i with likelihoods Li and incrementally weighted counts
Ci , combining these states into a single state inside marginalize with likelihood L and weighted count
C according to the following update equations is equivalent to combining the states at the end of run:

L =

N∑
i=1

Li

C =
N∑
i=1

Ci

See Appendix A.2 for a proof.

While this incremental approach resolves the issue with counts and likelihoods, there is still the

question of the substitution to return, given that marginalizemust merge a number of incompatible

substitutions. The approach described above, which returns the substitution associated with the

highest likelihood state, is one of several options. Its primary virtue is that it is easy to compute and

has a coherent probabilistic interpretation given certain assumptions. Namely, if each branch of the

marginalize returns only one state which itself was produced by a recursive call to marginalize, as
is the case in the HMM implementation above and other similar recursive models, then selecting

the substitution associated with the highest likelihood branch can be interpreted as selecting the

value of the distribution passed to marginalize that maximizes the probability of all possible future

assignments to all free variables. This corresponds to the assignment that maximizes the backwards

probability in the context of the forward-backward algorithm.

We do not have access, at this point, to the relevant forward probabilities with which to compute

the posterior decoding of the HMM, which would be a more typical variable assignment corre-

sponding to the summation strategy, and if the branches return more than one state or a state

that cannot be recursively interpreted as a summation, then the interpretation of this selection

becomes unclear. All we can say is that this selection gives the programmer the opportunity to

construct a program with a meaningful interpretation of its substitution. In any case, for likelihood

and training queries, this decision is irrelevant as only the likelihoods and counts are required.

miniKanren 2022, September 11 2022, Ljubljana, Slovenia Evan Donahue

4.4 Dynamic Programming with Tabling
This section introduces a modification to tabling that allows tabled relations to maintain correct

weights and counts, implicitly recovering the standard dynamic programming algorithms for

common generative models, such as the Viterbi, forward-backward, and Baum-Welch algorithms in

the case of HMMs. The aggregate streams described in Section 4.3 solve the problem of unnecessary

combinatorial explosion due to a failure to exploit conditional independence. However, that is not

the only source of combinatorial complexity.

In the naive implementation of HMM decoding, each position in the sequence is evaluated as

high or low in relation to all possible combinations of all other positions, yielding an algorithm

that is exponential in the number of observations. However, because each state is independent of

all past states given the immediately previous state, it is possible to cache only the optimal value

of each state for each possible transition from values of the previous states, leading to a family of

dynamic programming solutions that avoids the expected combinatorial explosion.

Tabling, which generalizes memoization for logic programs, allows the straightforward imple-

mentation of these dynamic programming algorithms simply by tabling the hmm relation when

implemented with argmax or marginalize. Two modifications to tabling as implemented in Byrd

[4] are required to properly account for the weights and counts of tabled answers and to ensure

termination.
8

4.4.1 Accounting for Weights and Counts. To begin with, in order to make tabling mathematically

compatible with WMC, the table must be extended to store not only answers but also counts and

likelihoods as well, so that these can be returned from tabled relations along with the answer terms.

Because a given tabled relation will be called from potentially many parts of the search tree with

the same arguments but with different counts and likelihoods, the table must preserve the counts

and aggregate likelihood of only the observe statements encountered within the tabled relation.

Each consumer of the tabled relation must then combine its counts and likelihood with the cached

values of the producer.

To achieve this tabling strategy, calls to tabled relations pass only the substitution and constraint

store to the relation, resetting the state’s counts and likelihood to 0 and 1 respectively. When the

relation returns an answer, its counts and likelihood will therefore only reflect those encountered

within the tabled goal. The producer and consumer streams generated by the table form preserve

the counts and likelihoods of their calling states, combining them with their counterparts returned

from the tabled relation with a weighted sum similar to the incremental counting of observations.

Theorem 4.6. LetC1..m be the incremental weighted count from observation 1 to m and letCm+1..n
be the incremental count from observationm + 1 to n, where observations i such that i ≤ m precede a
given tabled relation and observations such thatm < i ≤ n are within the tabled relation. Likewise,
let L1..m be the likelihood associated with the state prior to the tabled relation and let Lm+1..n be
the likelihood generated within the tabled relation and cached in the table. Then we compute the new
likelihood and weighted count Ln and Cn at the end of the call to the tabled relation as follows:

Ln = L1..mLm+1..n

Cn = Lm+1..nC1..m +L1..mCm+1..n

8
A third modification, which does not directly affect the semantics of the procedures described here, but which considerably

eases their implementation as well as the implementation of tabling as a whole, is to exchange the mutable implementation

for an immutable version that threads the table data through the goals in the obvious way.

WMC in miniKanren miniKanren 2022, September 11 2022, Ljubljana, Slovenia

For a complete proof, see Appendix A.3.

The argmax strategy in conjunction with tabling leads to Viterbi training or Viterbi decoding,

depending on the query. The Viterbi algorithm maintains a trellis of states and positions, populating

each cell in the trellis with the maximum likelihood of observing that state at that position, and the

index of the previous state that makes the present state most likely. Proceeding linearly through

the sequence, for each position, each state only need consider all possible immediately previous

states, and can ignore all combinations of states preceding that. It is clear that tabling hmm when

implemented with the argmax form achieves this algorithm, albeit in the equivalent reverse direction,

since the argmax form in the last position of the HMMwill produce only the state that maximizes the

state corresponding to that position for each possible transition. Subsequent attempts to recompute

this value from different paths through the previous state will simply reuse the cached value, which

in turn will build the backwards trellis within the table up to the initial position.

The summation strategy in turn recovers the forward-backward algorithm to compute the

weighted counts and consequently, when used iteratively for training, yields the Baum-Welch

training procedure. This equivalence is more difficult to see, especially since the conventional

implementation of forward-backward uses two passes—forward and backward—through the HMM.

We can gain some intuition by recognizing that the table already contains the backward probabilities.

The forwards probabilities are supplied piecewise by each call to a given tabled relation from each

possible prefix sequence of the HMM, which are combined according to Theorem 4.6 to produce

the products of forwards and backwards probabilities that characterize Baum-Welch. Baum-Welch

can, in fact, be viewed directly as a weighted sum over all possible paths through an HMM [13],

which is intuitively what this implementation computes.
9

4.4.2 Ensuring Termination. One difficulty that arises when combining aggregate streams and

tabling is that it is no longer possible to detect the fixed point of the computation in the usual way.

Normally, once the tabling implementation reaches a point at which all leaves of the search tree

are suspended streams, it must perform a sweep through those leaves to determine whether any

are capable of producing answers. If not, the computation as a whole has reached a fixed point, and

the search can be terminated. Once aggregate streams are introduced, however, they may intercept

answers before they can reach producer streams and be entered into the table, making the table

seem artificially empty and leaving consumer streams of the table unable to produce additional

answers, yielding a false positive fixed point result.

In order to deal with this, it is first necessary to observe that the particular graphical models

we target in this paper are acyclic and the associated dynamic programming algorithms assume

their data is finite. Consequently, there will always be a stream in the table that does not depend

cyclically on other streams. For instance, the tail end of the state sequence in an HMM does not

depend on further tabled calls but simply succeeds by unifying with the empty list. This means

that the full fixed point computation is not required, because a fixed point need never be reached

provided the tabling implementation possesses the means to clean up such streams individually.

This capability can be added by extending the tabling implementation with a boolean flag for

each cache (defined as the list of memoized answers keyed to each set of unique arguments supplied

to the tabled relation) that records whether or not the cache is still open. A cache starts in the open

state and remains open until its associated producer stream fails, at which point that stream can

close the cache by flipping the boolean flag. The next time a consumer stream attempts to examine

9
Parenthetically, although this has not been implemented, it should in principle be possible to accumulate the forwards

probabilities at the call site of each tabled relation in the table itself using another modification of the tabling implementation,

which would result in the final table containing the forward and backward probabilities required to compute the full posterior

decoding, with some additional work to extract these probabilities from the table at the end of run.

miniKanren 2022, September 11 2022, Ljubljana, Slovenia Evan Donahue

the cache for additional answers, it can observe that the cache is closed and, if it has consumed

all the available answers, fail directly without waiting for the fixed point computation to fail as a

whole.

Using this strategy, the final tabled calls will fail rather than suspend indefinitely, causing the

aggregate streams above them to fail as normal and return their answers, which will pass their

aggregated answers up to the tabled producers above them, which in turn will close their caches

and cause their consumer streams to fail once they have consumed all their answers, and so on up

the tree until the entire computation completes without ever reaching a fixed point. This strategy

guarantees the termination of the dynamic programming algorithms described in this paper, and

moreover has applicability to other problems beyond probabilistic computations that similarly

depend on an acyclic use of tabling.

5 EVALUATION
This section compares the performance of the naive, stream aggregating, and tabled approaches

to implementing HMMs and GMMs in order to confirm that these optimizations improve upon

the naive implementations. We compare performance on calculating the data likelihood of a

single HMM of varying observation sequence lengths, as well as a GMM of varying dataset sizes.

Numbers are recorded in seconds as reported by the language’s standard benchmarking utility,

which measures average runtime across at least one second’s worth of executions, less time spent in

garbage collection. Only a single benchmark was conducted at each size, as measurement precision

is less important here than the general trend. These experiments were run on a Lenovo Thinkpad

T520 with an Intel i7-2760QM processor running Ubuntu 18.04.

Overall, the results are as expected from the relative computational complexities of each method.

Figure 1(a) displays a three-way comparison between a naive Gaussian mixture model, a mixture

model implemented using aggregate streams, and a non-MiniKanren, manually implemented model.

This is a test of whether the implementation can exploit the conditional independence of the

independent and identically distributed data points in the dataset. The naive implementation

quickly explodes while the other two remain imperceptibly close to 0.

Figure 1(b) reproduces the same graph without the naive implementation to better compare the

aggregated and the manual versions. Both exhibit the expected linear growth due to factorizing the

independent data points, with the manual implementation outperforming the miniKanren version

by a factor of approximately 4. The difference is likely due to the overhead of the miniKanren search.

While this overhead could perhaps be streamlined, it will necessarily encounter a fundamental

limit to the extent that it is reproducing precisely the same calculation as the manual version

but with the addition of extra computations for the miniKanren search. Moreover, the manual

implementation used was not particularly optimized for the problem, and optimizations that exploit

the structure of a given learning problem, such as vectorizing the additions and multiplications in

the GMM calculation, could likely achieve significantly greater performance than is possible in the

more general miniKanren-based strategy. It should not, therefore, be assumed that a miniKanren

program will differ from its corresponding manual implementation by a factor of 4 in the general

case. Rather, this evaluation means only to suggest that, at least for some tasks, this implementation

is sufficiently practical to be of more than purely academic interest. That said, see section 6 for a

discussion of possible strategies for further narrowing the performance gap.

Figure 1(c) displays runtimes for decoding a single HMM based on the weather forecasting

example from Section 4.1. As expected, the naive and aggregate implementations show similar

exponential performance, as there is no conditional independence of sibling conjuncts to exploit.

That the aggregated implementation appears slightly faster has no theoretical basis, and is likely

WMC in miniKanren miniKanren 2022, September 11 2022, Ljubljana, Slovenia

(a) 2-cluster GMM (b) 2-cluster GMM without naive

(c) Single HMM Decoding (d) Multiple HMM Decoding (Length 4)

Fig. 1. Performance Tests

due to idiosyncrasies of the implementation. The tabled version, by contrast, exhibits the expected

linear performance of the Viterbi algorithm in the length of the sequence.

Figure 1(d) displays runtimes for the same HMM over a dataset of multiple HMMs of length 4

(chosen for best visual separation in the graph). The naive implementation quickly explodes due to

failure to exploit either the independence of the samples from the dataset or of the Markov chain

given its previous state. The aggregate stream exploits the independence of the dataset but not

of the chain itself. The tabled implementation, finally, exploits both types of independence and

avoids the combinatorial complexity. Moreover, given the small number of states in this particular

model, the tabled implementation is able to amortize its runtime across multiple data points as well

by simply looking up the observation sequence whole in the table without needing to run Viterbi

more than once for each unique chain in the dataset.

6 DISCUSSION & FUTUREWORK
This paper has primarily focused on using miniKanren to replicate standard generative probabilistic

modeling algorithms. However, there are several obvious avenues for future work building on the

basic WMC framework described here. In addition to increasing the expressiveness of the language

to include additional types of modeling tasks and borrowing techniques from other PPLs to further

miniKanren 2022, September 11 2022, Ljubljana, Slovenia Evan Donahue

optimize inference, there are also a number of potential avenues to use these models to enhance

the existing capabilities of the miniKanren search.

While the implementation is reasonably performant, per Section 5, it is nevertheless reasonable

to ask whether further gains could be made to further narrow the gap between it and manually

implemented models. Despite the unavoidable overhead of the miniKanren search, it may never-

theless be possible in instances to incorporate more advanced inference strategies that improve

upon the straightforward implementations of various inference algorithms. Sato et al. [19], for

instance, uses an extension to tabling to improve upon even the standard dynamic programming

algorithms by amortizing across EM iterations. Moreover, general approaches to accelerating EM

itself, such as through better sample efficiency, may offer additional benefits during training that

can mitigate some of the intra-iteration overhead and help close the distance or even surpass

manual implementations that do not make full use of all possible sources of efficiency [12, 23].

In addition to efficiency concerns, there are several natural extensions to the expressivity of the

language constructs described. Most obviously, the maximum likelihood updating strategy can

trivially be extended to a variational Bayesian strategy simply by changing the final calculation

in the maximization step of the EM algorithm to the usual Bayesian conjugate updating. Given

basic Bayesian updating strategies for the standard exponential family distributions, it would be

particularly useful to extend the language to handle non-parametric models. Currently, only a finite

number of distributions can be defined and used in the model. Various strategies for non-parametric

Bayesian modeling, which involves using the search behavior to instantiate new distributions,

would fit particularly well with miniKanren’s ability to generate infinite structures, and a number

of strategies exist that might be effectively adapted to the framework introduced here [3, 11].

Finally, one interesting possibility for broadening the utility of these models is that of integrating

them more closely with the miniKanren search. From prioritizing search branches [24] to re-

purposing the search to act as a sampler, there are a number of possibilities for how these models

might be used beyond standard questions of statistical modeling. Given miniKanren’s strengths in

program synthesis, it may be interesting to explore the synthesis of probabilistic programs models

themselves, although this would require further work to adapt the elements presented here to this

new purpose.

7 CONCLUSION
This paper has introduced a simple extension to miniKanren allowing for compact model speci-

fication and efficient variational inference of probabilistic models via weighted model counting.

The aim of this extension has been to enable the writing of probabilistic logic programs that

accomplish practical machine learning tasks. Moreover, in future work, we intend to further extend

this modeling framework and inference engine to capitalize on miniKanren’s existing strengths

in program synthesis and general constraint logic programming to explore applications at the

intersection of logic and probability.

8 ACKNOWLEDGMENTS
We thank Rob Zinkov, Will Byrd, Arunava Gantait, and Julie Steele for their comments on early

drafts and for extensive discussions about the fundamental ideas on which this paper was based.

We also thank the anonymous reviewers for their detailed suggestions.

REFERENCES
[1] Samer Abdallah, Nicolas Gold, and Alan Marsden. 2016. Analysing Symbolic Music with Probabilistic Grammars.

Computational Music Analysis (2016), 157–189.

WMC in miniKanren miniKanren 2022, September 11 2022, Ljubljana, Slovenia

[2] Michael Ballantyne. 2020. Faster miniKanren [Source Code]. (2020). https://github.com/michaelballantyne/faster-

miniKanren

[3] David Blei and Michael Jordan. 2006. Variational Inference for Dirichlet Process Mixtures. Bayesian Analysis 1, 1
(2006), 121–143.

[4] William Byrd. 2010. Relational Programming in Minikanren: Techniques, Applications, and Implementations. Ph.D.
Dissertation. Indiana University.

[5] William E Byrd, Eric Holk, and Daniel P Friedman. 2012. MiniKanren, Live and Untagged: Quine Generation via

Relational Interpreters (Programming Pearl). In Proceedings of the 2012 Annual Workshop on Scheme and Functional
Programming. ACM, 8–29.

[6] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. 2007. ProbLog: A Probabilistic Prolog and Its Application in

Link Discovery.. In IJCAI, Vol. 7. Hyderabad, 2462–2467.
[7] Arthur Dempster, Nan Laird, and Donald Rubin. 1977. Maximum Likelihood from Incomplete Data Via the EM

Algorithm. Journal of the Royal Statistical Society: Series B (Methodological) 39, 1 (1977), 1–22.
[8] Evan Donahue. 2021. Guarded Fresh Goals: Dependency-Directed Introduction of Fresh Logic Variables. miniKanren

and Relational Programming Workshop (2021).

[9] Jason Eisner, Eric Goldlust, and Noah A Smith. 2005. Compiling Comp Ling: Weighted Dynamic Programming and the

Dyna Language. In Proceedings of Human Language Technology Conference and Conference on Empirical Methods in
Natural Language Processing. 281–290.

[10] Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling Exact Inference for Discrete Probabilistic

Programs. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–31.

[11] Viet Huynh, Dinh Phung, and Svetha Venkatesh. 2016. Streaming Variational Inference for Dirichlet Process Mixtures.

In Asian Conference on Machine Learning. PMLR, 237–252.

[12] Xiao-Li Meng and David Van Dyk. 1997. The EM Algorithm—An Old Folk-Song Sung to a Fast New Tune. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 59, 3 (1997), 511–567.

[13] István Miklós and Irmtraud Meyer. 2005. A Linear Memory Algorithm for Baum-Welch Training. BMC Bioinformatics
6, 1 (2005), 1–8.

[14] Søren Mørk and Ian Holmes. 2012. Evaluating Bacterial Gene-Finding HMM Structures as Probabilistic Logic Programs.

Bioinformatics 28, 5 (2012), 636–642.
[15] Stephen Muggleton et al. 1996. Stochastic Logic Programs. Advances in Inductive Logic Programming 32 (1996),

254–264.

[16] David Poole. 1993. Logic Programming, Abduction and Probability. New Generation Computing 11, 3 (1993), 377–400.

[17] Lawrence Rabiner. 1989. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc.
IEEE 77, 2 (1989), 257–286.

[18] Taisuke Sato. 2005. A Generic Approach to Em Learning for Symbolic-Statistical Models. In Proc. of the 4th Learning
Language in Logic Workshop (LLL-05).

[19] Taisuke Sato, Shigeru Abe, Yoshitaka Kameya, Kiyoaki Shirai, Sato Taisuke, et al. 2001. Fast EM Learning of a Family

of PCFGs. (2001).

[20] Taisuke Sato and Yoshitaka Kameya. 1997. PRISM: A Language for Symbolic-Statistical Modeling. In IJCAI, Vol. 97.
Citeseer, 1330–1339.

[21] Jacob Schreiber. 2017. Pomegranate: Fast and Flexible Probabilistic Modeling in Python. The Journal of Machine
Learning Research 18, 1 (2017), 5992–5997.

[22] Joost Vennekens, Sofie Verbaeten, and Maurice Bruynooghe. 2004. Logic Programs with Annotated Disjunctions. In

International Conference on Logic Programming. Springer, 431–445.
[23] Jiangtao Yin, Yanfeng Zhang, and Lixin Gao. 2012. Accelerating Expectation-Maximization Algorithms with Frequent

Updates. In 2012 IEEE International Conference on Cluster Computing. IEEE, 275–283.
[24] Lisa Zhang, Gregory Rosenblatt, Ethan Fetaya, Renjie Liao, William Byrd, Matthew Might, Raquel Urtasun, and Richard

Zemel. 2018. Neural Guided Constraint Logic Programming for Program Synthesis. Advances in Neural Information
Processing Systems 31 (2018).

[25] Neng-Fa Zhou, Yoshitaka Kameya, and Taisuke Sato. 2010. Mode-Directed Tabling for Dynamic Programming, Machine

Learning, and Constraint Solving. In 2010 22nd IEEE International Conference on Tools with Artificial Intelligence, Vol. 2.
IEEE, 213–218.

[26] Robert Zinkov andWillliam Byrd. 2021. probKanren: A Simple Probabilistic Extension for microKanren.. In Probabilistic
Logic Programming Workshop.

https://github.com/michaelballantyne/faster-miniKanren
https://github.com/michaelballantyne/faster-miniKanren

miniKanren 2022, September 11 2022, Ljubljana, Slovenia Evan Donahue

A PROOFS
A.1 Proof of Theorem 4.3: Equivalence of Weighted and Incrementally Weighted

Counts
We want to show that Theorem 4.3 computes CM , and in particular, C whenM = N .

Proof.

C = CN (Definition 4.1)

=

N∏
i=1

ℓi

N∑
j=1

c j (Definition 4.2)

=

N∏
i=1

ℓi

(
cN +

N−1∑
j=1

c j

)
=

(
cN

N∏
i=1

ℓi

)
+

(
ℓN

N−1∏
i=1

ℓi

N−1∑
j=1

c j

)
= cNLN + ℓNCN−1 (Theorem 4.3)

□

A.2 Proof of Theorem 4.5: Correctness of Marginalized Counts
To show that marginalized streams yield identical calculations to the original streams, we must

prove that the summed likelihood L and the summed weighted counts C yield the same results

whether first summed and then subjected to future observe goals or first subjected to future observe

goals and then summed either at the end of run, as per the naive implementation, or within another

marginalize. First, consider the likelihood L ′ = ℓL after an observe with a likelihood of ℓ. We

use the prime notation so that subscripts can represent an index into the substreams of marginalize

rather than the number of observations, as in previous proofs. Hence, prime should be taken to

mean N + 1 where non-prime values should be taken to be N in the formalism of Theorem 4.3. We

want to show that multiplication of L by ℓ is equivalent to the sum of the likelihoods of each Li
scaled by the same amount and later summed.

Proof. Let L =
∑N

i=0 Li where Li is the likelihood of state i to be aggregated by marginalize

and there are N such states in total. Then we have:

L =

N∑
i=0

Li

ℓL = ℓ

N∑
i=0

Li

L ′ =

N∑
i=0

ℓLi

This is the same as if each Li had individually encountered the observe and been summed at a

later point. □

WMC in miniKanren miniKanren 2022, September 11 2022, Ljubljana, Slovenia

Next, consider weighted count C =
∑N

i=0 representing the summation of the weighted counts

of N answers aggregated by marginalize . We want to show again that observe distributes over

states’ weighted counts.

Proof. Let incremental weighted count C ′ = CN+1 where C = CN for some N representing the

number of observations summarized by the final return value of marginalize. Theorem 4.3 gives

the relationship between C ′
and C , and so it is necessary only to demonstrate that this relationship

distributes over each Ci where C =
∑N

i=0Ci .

C ′ = c ′L ′ + ℓ′C (Theorem 4.3)

= c ′ℓ′
N∑
i=0

Li + ℓ
′

N∑
j=0

Cj

=

N∑
i=0

c ′ℓ′Li + ℓ
′Ci

=

N∑
i=0

C ′
i

□

A.3 Proof of Theorem 4.6: Correctness of Tabled Counts
We want to show that the final likelihood Ln = L1..mLm+1..n and that the final incremental

weighted count Cn = Lm+1..nC1..m +L1..mCm+1..n are equivalent to the corresponding values

produced by the untabled conjunction of observation goals from 1 to n.

Proof. Beginning with Ln :

Ln =

n∏
i=1

ℓi

=

m∏
i=1

ℓi

n∏
j=m+1

ℓj

= L1..mLm+1..n

Next, for Cn :

miniKanren 2022, September 11 2022, Ljubljana, Slovenia Evan Donahue

Cn =

n∏
i=1

ℓi

n∑
j=1

c j

=

m∏
i=1

ℓi

n∏
j=m+1

ℓj

(
m∑
k=1

ck +
n∑

l=m+1

cl

)
=

n∏
j=m+1

ℓj

(
m∏
i=1

ℓi

m∑
k=1

ck

)
+

m∏
i=1

ℓi

(
n∏

j=m+1

ℓj

n∑
l=m+1

cl

)
= Lm+1..nC1..m +L1..mCm+1..n

□

	Abstract
	1 Introduction
	2 Related Work
	3 Overview of Probabilistic Extensions
	3.1 Modeling
	3.2 Querying

	4 Implementation
	4.1 Hidden Markov Model for Weather Forecasting
	4.2 Naive Implementation
	4.3 Aggregating Conditionally Independent Streams
	4.4 Dynamic Programming with Tabling

	5 Evaluation
	6 Discussion & Future work
	7 Conclusion
	8 Acknowledgments
	References
	A Proofs
	A.1 Proof of Theorem 4.3: Equivalence of Weighted and Incrementally Weighted Counts
	A.2 Proof of Theorem 4.5: Correctness of Marginalized Counts
	A.3 Proof of Theorem 4.6: Correctness of Tabled Counts

